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ABSTRACT

Ultrasonic signal processing presents several challenges with respect to both noise
removal and interpretation. The interference of unwanted reflections from material grain
structure can render the data extremely noisy and mask the detection of small flaws. It is
therefore imperative to separate the flaw reflections from grain noise. The interpretation or
classification of ultrasonic signals in general is relatively difficult due to the complexity of
the physical process and similarity of signals from various classes of reflectors.

Adaptive noise cancellation techniques are ideally suited for reducing spatially
varying noise due to the grain structure of material in ultrasonic nondestructive evaluation.
In this research. a multi-stage adaptive noise cancellation (MANC) scheme is proposed for
reducing spatially varying grain noise and enhancing flaw detection in ultrasonic signals.
The overall scheme is based on the use of an adaptive least mean square error (LMSE) filter
with primary and reference signals derived from two adjacent positions of the transducers.
Since grain noise is generally uncorrelated, in contrast to the correlated flaw echoes. adaptive
filtering algorithms exploit the correlation properties of signals in a C-scan image to enhance
the signal-to-noise ratio (SNR) of the output signal.

A neural network-based signal classification system is proposed for the interpretation
of ultrasonic signals obtained from inspection of welds. where signals have to be classified as
resulting from porosity, slag, lack of fusion. or cracks in the weld region. Standard
technmiques rely on differences in individual A-scans to classify the signals. This thesis
investigates the need for investigating signal features that incorporate the effects of beam

spread and echo dynamics. Such effects call for data interpretation schemes that include a



neighborhood of A-scans carrying information about a reflector. Several ultrasonic signal
features based on the information in a two-dimensional array of ultrasonic waveforms.
ranging from the estimation of statistical characteristics of signals to two and three-
dimensional transform-based methods, are evaluated. A two-dimensional scan of ultrasonic
testing is also represented in the form of images (B- and B’-scans). Multidimensional signal
and image-processing algorithms are used to analyze the images. Two and three-dimensional
Fourier transforms are applied to ultrasonic data that are inherently three-dimensional in
nature (2 spatial and 1 time). A variety of transform-based features are then utilized for

obtaining the final classification.



CHAPTER 1. INTRODUCTION

[.I Weld Inspection and Ultrasonic Nondestructive Evaluation (NDE)

Welding is the most efficient way to join metals. It is also the only way to join two or
more pieces of metal to make them act as one piece. Welding is widely used to manufacture
or repair all products made of metal. Welds are encountered in many structures such as gas
transmission pipelines. nuclear power reactors., aircrafts. automobiles, and ships.

[n order to understand the concept of welding, we must first define joint and weld. A
joint is the junction of members or the edges of members that are to be joined or have been
joined. Welds in metals are produced either by heating materials to the welding temperature.
with or without the application of pressure, or by applying pressure alone. again with or
without the use of filler metal. Several types of weld joints exist. such as butt. corner. edge.
lap. and tee joints.

Some of the commonly used methods in the arc welding process are shielded metal
arc welding (SMAW) and gas metal arc welding (GMAW) [1][2]. SMAW is a process that
contains an arc between a covered electrode and the weld pool. GMAW is an arc welding
process that uses an arc between a continuous filler metal electrode and the weld pool. The
process is used with shielding from an externally supplied gas and without the application of
pressure (Figure [.1). GMAW is used in all industrial manufacturing operations, military

equipment, and field constructions including gas pipelines.
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Figure 1.1 The gas metal arc welding process [1].

Weld defects are produced by material stress. fatigue. and environmental changes as
well as the manufacturing process. During weld inspection. the commonly occurring defects
in welded joints are porosity, slag, lack of fusion. and cracks. These defects can be
categorized into two major types of discontinuities, namely volumetric and planar.
Volumetric discontinuities include porosity and slag. Lack of fusion and cracks in the joints
are referred to as planar flaws. Porosity is one of the most common weld defects. The main
cause of weld metal porosity is the contamination of hydrogen in the weld metal. Porosity
can be classified by size and location. It may be scattered in small clusters or occur along the
entire length of the weld [3]. Fine scattered porosities are less severe than larger porosities,
which are clustered or aligned. Aligned porosity is normally related to lack of fusion [4].
This defect is easily detected by radiographic inspection of the welds. Slags produced in arc
welding serve as scavengers of impurities in the molten metal pool. This process forms a
slag blanket over the weld that controls the cooling rates and excludes atmospheric oxygen

from the hot metal surface.



Slag inclusions are often characterized by their location at the edges of the underlymg
metal deposits, where they often tend to extend longitudinally along the weld. They are
generally detected by radiographic testing and have irregular shapes and sizes. Since slag
inclusions cause a weakening of the weld and often serve as crack initiation points, this type
of defect could probe difficulty for the operator to decipher the characteristics that exist
between crack and slag inclusions. Porosity and slag inclusions are volumetric anomalies
that mainly occur in the manufacturing welding process. They are considered to be less
severe in terms of strength. but they can essentially deform material characteristics and
initiate critical cracks.

Lack of fusion is a very common planar type of weld defect. It represents an area that
suffers from insufficient mechanical binding between weld metal and base metal. Since the
two surfaces of weld and base metal are pressed closely together. this type of defect is
normally not detectable by radiographic examination. Although lack of fusion is in general
not an acceptable weld defect. it is characterized as a planar defect and treated in the same
way as cracks. Cracks are the most severe of the defects in a weld. Cracks may be
embedded on the surface of the weld metal or in the heat affected zones. Most cracks occur
during solidification and cooling, while some cracks may also develop at a later stage caused
by stress or environmental conditions such as stress corrosion and fatigue. Cracks are
difficult to detect by radiographic inspection alone unless their planes are aligned with the
radiation direction.

To ensure cost saving and safety, weld defects are inspected by nondestructive
methods that use one of inspection processes — visual, radiographic. or ultrasonic inspection.

Radiography is most sensitive to volumetric type discontinuities because of the principle on



which it works, i.e., absorption of radiation. The use of radiographic inspection technique is
most prevalent in the shipping industry. The predominant types of discontinuities detectable
in radiographic inspection are volumetric (slag and porosity).

Ultrasonic flaw detection has long been the preferred method for welding inspection
in the nuclear industry. The safety, accuracy, and simplicity of the technique have continued
to push the use of ultrasonics in piping welds inspection. In addition. ultrasonic testing has
been reported to be more reliable in detecting planar weld discontinuities such as cracks and
lack of fusion [5][6]. Ultrasonic inspection [7] can be carried out using straight beam and
angle beam incident waves. Straight beam testing is often insensitive to cracks. For
example. if the defect is vertical and thin. it will not reflect enough sound back to the
transducer to ensure its detection. The other method of ultrasound testing is via angle beam
incidence. Angle beam transducers use the principles of refraction and mode conversion to
produce refracted shear or longitudinal waves in the test material. The process involves
scanning the surface of the material around the weldment with the transducer. This refracted
sound wave bounces off a reflector (discontinuity) in the path of the sound beam. With
proper angle beam techniques, echoes returned from the weld zone allow the operator to
determine the location and type of discontinuity.

Practical applications of radiographic inspection have several problems such as:

. Radiation hazards that cause unnecessary delays until radiographic inspections are
complete.
2. Inspection results are not immediately available. as the radiographic film must be

processed and interpreted before the inspection is complete.



Ultrasonic inspection, on the other hand, presents no safety hazards. Concurrent
work in adjacent areas can continue during the inspection procedure. Moreover, the
inspection results are available immediately because the ultrasonic operator inspects.
interprets, and disposes the weld at the time of the inspection. An additional advantage is the
potential for more accurate sizing of discontinuities through the use of sophisticated software
such as synthetic aperture focusing techniques (SAFT) [8][9]. I[n recent years. automated
signal analysis systems have found increasing applications in ultrasonic weld inspection
largely because these systems can potentially improve the ability to acquire and analyze data
in a consistent manner.

This thesis attempts to develop an automated signal classification (ASC) system for
consistent and accurate interpretation of welid ultrasonic data obtained from weld inspection.
ASC system is also referred to as knowledge-based system since the system can embed
expert knowledge in the analysis algorithms. Instead of relying only on ultrasonic amplitude.
discontinuity length. and proximity measurements to interpret the signal. ASC system can
determine discontinuity types. namely. crack. slag, porosity, and lack of fusion with higher
accuracy and consistency.

To achieve optimum accuracy of the ASC system. a significant amount of effort was
first focused on reducing the noise in the ultrasonic measurements caused by material grain
structure. A multi-stage adaptive noise cancellation (MANC) scheme is proposed for
reducing spatially varying grain noise and enhancing flaw detection in ultrasonic signals.
This schemne is based on the use of an adaptive least mean square error (LMSE) filter with
primary and reference signals derived from two adjacent positions of the transducers. The

concept of LMSE filter is also extended to the development of a multistage adaptive wavelet



de-noising filtering algorithm.

This thesis also investigates the need for incorporating the effects of beam spread in
ultrasonic signal classification. Such effects call for data interpretation schemes based on the
information in a neighborhood of A-scans about a reflector. A two-dimensional scan of
ultrasonic testing is usually performed resulting in a three-dimensional volume of data (2
spatial and | time). Multidimensional signal processing and data fusion algorithms have

been developed to analyze the data in Fourier and wavelet transform domains.

[.2 Adaptive Noise Cancellation

In ultrasonic inspection. detection of small flaws is often rendered difficult by the
clutter introduced due to the grain structure of the material. The scattering of ultrasonic
waves from grain boundaries can interfere and introduce artifacts in the received signal that
can sometimes mask indications of a small flaw. For instance. the grain noise can hinder the
detection of small but potentially dangerous flaws, such as hard-a inclusions in titanium
alloy components [10]. Furthermore, since grain structure typically varies spatially within
the material. grain noise can be considered to be a stochastic process [I1].

Several signal processing techniques have been developed over the years to reduce
grain noise. including spatial averaging [12]. bandpass filtering [I3], split-spectrum
processing [14]. and adaptive signal processing [15]. Among these procedures. adaptive
signal processing algorithms have gained popularity in recent years primarily due to its
ability to handle spatially varying noise in signals. An adaptive grain noise cancellation

algorithm for ultrasonic signals using an infinite impuise response (IIR) filter is reported in



[16]. The adaptive filter automatically adjusts its parameters by making use of the
correlation between reference and auxiliary inputs from two sensors. However. when the
underlying assumptions regarding the correlation properties of signal and noise are not
strictly satisfied. the adaptive signal processing (ASP) algorithm can result in sub-optimal
performance.

This research proposes a multi-stage adaptive filtering (MAF) scheme for enhancing
the signal-to-noise ratio (SNR) by performing grain noise cancellation in stages. At each
stage. the filter exploits the statistical correlation properties of grain noise and flaw
indications in A-scans obtained from adjacent positions of the transducer. It is shown that
each stage of the adaptive noise cancellation (ANC) algorithm not only increases the SNR of
the input signal but also reduces the correlation between flaw and noise signals.

Consequently, a second stage of ANC further increases the SNR of the signal.

1.3 Multi-dimensional Signal Classification

A second focus of this thesis is ultrasonic testing (UT) signal classification. ASC
systems are being used increasingly in nondestructive testing (NDT) largely due to their
ability to provide accurate and consistent interpretation of large volumes of data. ASC
systems have been used successfully to classify signals obtained from a wide variety of
sources, including ultrasonic, eddy current, and magnetic flux leakage signals [17]. In
ultrasonic nondestructive testing, a transducer sends an ultrasonic wave into the test sample
and receives the reflected wave from discontinuities in the sample. The received energy is

converted into an electrical signal by the transducer, resulting in a one-dimensional time



domain signal called an A-scan at each transducer position. A raster scan of a two-
dimensional area is used to collect A-scan signals. Each position in the raster scan generates
a three-dimensional volume of data. Alternate techniques for representing ultrasonic signals
are by displaying the collection of A-scans in a line scan to form a two-dimensional image.
The B-(axial scan) and B’-scan (circumferential scan) represent a cross-sectional view of the
object on a plane that is normal to the surface of the probe. A C-scan image shows the plane
view of the test specimen. In order to produce a C-scan, the probe is mechanically scanned
over the surface. Typically, the pixel values in C-scan are generated by peak value in each
A-scan signal. The amplitude of the reflected signal is used to modulate the intensity of
pixels in an image.

In conventional ASC systems. a discontinuity type is determined by using the
amplitude and the shape of the A-scan data. A schematic of the generic ASC system is
shown in Figure 1.2. The raw NDT signal is applied to a preprocessing block that is used to
de-noise the signal and extract features. Noise clutter. caused by the grain structure of the
material, often hinders detection of a signal class. Hence, de-noising the signal will enhance
the ability of the ASC system to detect small flaws. In order to interpret the signal
accurately, we must take into consideration features or invariant attributes of the signal that
contain necessary discriminatory information. The feature vectors then becomes inputs to a
classification system that provides the result. The classifier. usually a clustering algorithm or
a neural network. is first trained to distinguish between the different classes using a training
data set. In general. ultrasonic signal classification systems are based on processing
individual A-scans [18](I9]. In many signal classification applications, the investigation of

individual A-scans is the most logical and intuitive way to view signals. Even though these
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Figure 1.2 A generic automated signal classification scheme.

approaches show reasonable success in ultrasonic testing data analysis, a single A-scan signal
itself cannot represent a type of flaw in time, space, or transform domain.

Ultrasound intensity along the beam is not uniform due to the finite aperture of the
source that gives rise to diffraction effects [20][21][22][23]. There are extensive fluctuations
near the source, known as the near field or Fresnel zone. Because of the variations within the
near field. it can be extremely difficult to characterize flaws accurately in materials. The
ultrasonic beam is more uniform in the far field or Fraunhofer zone. In this zone. the beam
spreads out as if originating from the center of the transducer. Figure 1.3 shows the near/far
field zone transition at a distance N that is significant because amplitude variations that
characterize the near field change to smoothly declining amplitude as the distance from the

transducer increases. The near and far distance measure can be written as
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Figure 1.3 The near and far zones of the ultrasonic beam [21].

v

N=—— (L.1)

where r is the radius of the transducer aperture, f is the frequency of the transducer. and v is
the velocity of sound in the liquid or solid medium.

Beam spread is an important consideration in transducer selection [24][25]. It defines
how much the beam will spread with distance. Beam spread is largely determined by the
frequency of the sound waves. A high frequency transducer produces a narrow beam, and a
low frequency transducer produces a wider beam. Due to the beam spread. information
about a scatterer is present in a neighborhood of A-scans. Hence. it is important to analyze
the B- and B’-scan images collectively and thereby capture the echo dymamics i ultrasonic
signals.

The effectiveness of B-scan analysis in showing flaw details depends upon the

relationship between the flaw size and beam area. The larger the sound-beam area. the
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greater the number of small discontinuities illuminated by the sound. Several of these echoes
returning at the same time can add and cause an ultrasonic flaw-type indication of rejectible
amplitude. [t is, therefore, necessary to analyze a neighborhood of signals prior to making a
classification decision. Such an approach provides a better estimate of the dynamics in the
signal.

Previous work on the classification of a group of A-scans 1:sing principal component
analysis has been reported in [26], where the statistical variance of a group of A-scans in a
neighborhood is computed. Classification is based on the fact that geometric indications in
the material do not vary much spatially and consequently have a lower variance than those
obtained from uregular flaws. Although this technique is computationally simple. the
scheme does not capture all the characteristics of the signal. This thesis investigates the
application of wavelet transform to analyze the set of A-scans. Furthermore. it experiments
with multi-dimensional Fourier transform for the B- and B’-scan data and three-dimensional

moments on the spatial and frequency domain to obtain a final classification for a flaw.

[.4 Organization of the Thesis

Chapter 2 addresses the problem of enhancing signal-to-noise ratio of ultrasonic
testing signals. A commonly used technique known as split spectrum processing is first
described with a discussion of its limitations. In Chapter 3. the principles of adaptive noise
cancellation using finite impulse response (FIR) filters, its extension to the multi-stage
adaptive filtering process, and the feasibility of using two adaptive filters in cascade for

obtaining improved performance are discussed. Experimental results with regard to various
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parameters such as effects of filter length, convergence rates, and transducer spacing are also
described in this chapter. Additionally an adaptive wavelet de-noising method also is applied
to compare the performance of the multi-stage adaptive filtering method. Chapter 4
addresses the problem of ultrasonic signal classification. Previous work based on A-scan
classifications with respect to feature extraction and classification schemes are presented.
Chapter 5 presents a proposed approach to multi-dimensional signal classification that uses
two-dimensional feature vector of B- and B'-scan images as they are applied to the ultrasonic
weld inspection. In addition, the principal components use to reduce the dimensionality of a
feature vector. Three-dimensional moments also exploit in the spatial and frequency domain.

Finally. conclusion and future plans are discussed in Chapter 6.
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CHAPTER 2. SPLIT SPECTRUM PROCESSING

Using ultrasonic nondestructive evaluation to detect small flaw signals of a specimen
with large microstructures can be a difficult task due to the interference caused by scattering
from grain boundaries. Although recent improvements in hardware technology allow
transducers to operate at higher frequencies with a smaller focal spot size, the microstructure
grain noise in test material cannot be reduced by conventional linear filtering or by time
averaging. Several signal processing algorithms have been developed for minimizing the
effect of the noise while maximizing the signal. Approaches such as Wiener filtering
[271[28]. spatial averaging [12], and maximum likelihood estimation [29] have all been
utilized for noise suppression in ultrasonic testing. These methods use fixed filters based on
a single noise model. However. in many practical applications, noise is usually time varying.
Fixed filters, therefore. are in general ineffective in reducing grain noise. Split spectrum
processing is a technique proposed in [14] that was shown to be very effective in reducing

grain noise. This technique is described in detail below.

2.1 Review of Split Spectrum Processing

In the last decade. split spectrum processing (SSP) was shown to be a very promising
tool to enhance the signal-to-noise ratio (SNR) of ultrasonic test signals [30]{3 1]{32](33][34]
[35]. The basic problem with ultrasonic grain noise reduction is that the signal energy of

both the flaw and microstructure lies within the same frequency range. Hence, typical
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filtering techniques, such as a lowpass, highpass, or a single bandpass filter are not effective.
Any filter designed to eliminate the microstructure signal would also result in the loss of the
flaw signal.

In split spectrum processing, the frequency band containing most of the flaw signal
energy is evenly divided into a number of smaller frequency bands. A bank of bandpass
filters represents these frequency bands. The bank of filters is applied to an ultrasonic signal.
and the minimum output at each point in time is taken as the final output with reduced a
microstructure signal and enhanced flaw reflections. Figure 2.1 is a block diagram of split
spectrum processing. As illustrated in this diagram. the input x(n) is presented to the bank of

bandpass filters. y,(n). i=[2,...L. represents individual filter outputs. Once the filter

outputs are calculated. the final output value, y(n), is selected to be Isnirs{v, (n)} for the

corresponding point in time n. The algorithm was implemented in frequency domain.
The spectrum of the ultrasonic signal x(n) was obtained using Discrete Fast Fourier

transform as
y-i
X(k)y=Y x(nW," @.1)
0

where W, =exp(—j22/N) and N is a length of an ultrasonic signal. Split spectrum

processing splits the spectrum into different frequency bands using Gaussian filters defined

by

26*

G.(k)=(Qnc*)™"* exp[-u;:[ (22)
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Figure 2.1 A block diagram for split spectrum processing.

where f is the mean frequency and o ° is the variance of the Gaussian filter. Theoretically.

a time limited signal produces an infinite bandwidth. However. because of the frequency
response of the ultrasonic signal. the optimal frequency region selection is limited to a

frequency band of B Hz defined by [ f,.., - f,. | as shown in Figure 2.2. Thus. the number

of frequency bands Nguussian 1S

Ny =BT 23)

where T is the total time duration of the ultrasonic signal. The optimum frequency separation

of two successive filters is

- fuppgr_fimur

Hz (2.4)

N, -1



Figure 2.2 Split spectrum filtering scheme.

Figure 2.2 shows the filtering scheme of the original wide-band signal. The center
frequencies of the Gaussian filters are selected so that they fall within the usable limited

bandwidth B. Therefore. the filter center frequencies are defined as

[, = fiwer HE=DAf. i=12.....L 2.5)

where L is the number of Gaussian filters. The Gaussian filters were used to split the
spectrum into several overlapping bands so that none of the frequency components of the
original signals are lost in the processing.

The output of the overlapping Gaussian filters with different center frequencies
consist of the different split spectra, Y (k), i=12....Ng, ..- The time domain signal of
each individual frequency bands can be found by computing inverse Fourier transform.

which can be written as
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N1

I .
¥:(n) =172 YW, i =12 Nguian - (2.6)
[}

Finally, the time domain signals from each individual frequency band are then passed

through a minimization stage, and the final output signal is computed as

v(n)= réu‘;ILl[v,(n)l n=12...N. Q.7

The basic objective of this technique is to suppress the reflection from grain
boundaries while retaining the flaw echo. The signals from rain boundaries. in general. are
random and uncorrelated signals [14]. Hence the reflection from grain boundaries interferes
to produce a resultant signal whose net phase and amplitudes depends more strongly on
frequency than a flaw signal. Due to this sensitivity of grain echoes on the frequency band. a
minimization method rather than averaging is more effective in suppressing the grain noise in
the final output. Therefore. split-spectrum processing technique can enhance the signal-to-

noise ratio while suppressing the grain noise signals.

2.2 Limitations of Split Spectrum Processing

Split-spectrum processing (SSP) methods are sensitive to filter parameters such as
center frequency f, of the filters, the center frequency spacing 4f, Gaussian filter variance o
and the minimization scheme. In this section, we analyze limitations of the SSP technique

using a synthetic signal.
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2.2.1 Effect of « and Minimization Scheme

Consider a synthetic windowed sine wave x(n) of frequency 50 Hz expressed as

[O. 0<n<250
x(n) ={sin(27fn), 250<n <350 (2.8)
0. 351<n<600.

Adding Gaussian noise to the signal. we get the signal model equation

y(n) =x(n)+n(n) (2.9)

where n(n) is an additive Gaussian noise of zero mean and variance 2. The signal v(n) is
plotted in Figure 2.3. The input signal y(n) is of a length of 601 samples obtained at 1000 Hz
sampling frequency. Consequently, the total time duration (T) of the ultrasonic signal is
0.601 seconds. As can be seen in Figure 2.4. most of the signal energy lies in the frequency
range 40 ~ 60 Hz, giving a valuable bandwidth B of 20 Hz. In general. the variance of

Gaussian filters (0) is constant and can be expressed as

b=c°=a*Af (2.10)

where @ is a scaling factor used for determining the width of Gaussian filters. Based on the

separation of the filters. 4f must be chosen as 1.8182 Hz using Equation (2.3).
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Figure 2.5 shows the effect of @ on the filter output. As shown in Figure 2.5-(a) and
(b), for small values of &, the SSP outputs are not enhanced. If & is less than the frequency

spacing 4f, the Gaussian filters are non-overlapping. This means that the frequencies in

between two neighboring Gaussian filters are passed without filtering. Therefore. the a

value should be selected to be greater than Af. In this example, the value of « must be

greater than 2. Also, too large a value of @ can make the shape of Gaussian filters
asymmetrical when the value of a is greater than 8. Therefore, the optimal value of @ is
chosen to be 4 and the variance b is 7.2727 in this experiment. Figure 2.6 shows the output
using the SSP technique. In Figure 2.6-(a). the final output of the SSP filters is obtained by
selecting the minimum output according to Equation (2.7). The use of an alternate
minimization algorithm called the polarity minimization scheme produces the output shown
in Figure 2.6~(b). The polarity minimization scheme can be described in the following

equation.

ytn) = {max{l y,(n)l(,)i:l..?.,....N} if fori. _v,(n)<[0 or v,(n)>0 @10
etse

In polarity thresholding, the output is set to the maximum magnitude value of the
ensemble if there is no polarity change. Otherwise. the output is assigned to zero. Correlated
peaks. a likely ndication of the presence of a target. will be maximized in amplitude.
otherwise the amplitude value is set to zero. Figure 2.7 shows the result obtained using a
single bandpass filter with passband frequency range [40 ~ 60 Hz]. As seen in this result. the
multiple bandpass filters within the usable spectral range provide better SNR than those

obtained using a single bandpass filter.
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2.2.2 Signals with Two Distinct Frequencies

Suppose a signal x(n) is composed of two sinusoids of frequencies 50 Hz and 120 Hz.

as described below:
0. 0<n<250
x(n) = {sin(27f,n) +sin(27f,n), 250<n <350 2.12)
0. 351<n <600

Adding a Gaussian noise of zero mean and variance 2 to the signal x(n). the resultant signal
with noise can be expressed as in Equation (2.9). The input signals. x(n) and y(n) are plotted

in Figure 2.8-(a) and (b), respectively. Again, the input signal y(n) is of a length of 601
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samples obtained at 1000 Hz sampling frequency, and the total time duration (T) of the
ultrasonic signal is 0.601 seconds. In Figure 2.8-(c), most of the signal energy lies in the
frequency range 40 ~ 130 Hz, and the bandwidth of the usable spectrum becomes 90 Hz.

Therefore, the number of Gaussian filters ( N, ... ) is 54 using Equation (2.3). According to

Equation (2.4). the optimum frequency separation of the filters Af must be chosen as [.6981
Hz. The variance b of 6.7925 with the scaling factor & of 4 is used for determining the width
of Gaussian filters.

The result of SSP is shown in Figure 2.8-(d). The output of SSP fails when the input
signal contains two significant frequencies as seen in Figure 2.8-(d). Since the most
dominant energy bands are two separate frequency ranges. 40 ~60 Hz and [ 10 ~ 130 Hz. the
final result is not as desirable as when the range is chosen as 40 ~ 130 Hz. This result clearly
shows that the SSP technique works only when the target frequency is contained in a single
wideband. Also. when the target and noise frequencies are very close. the technique is not

very effective in selectively reducing the noise as will be shown in the next chapter.

223 Effectof f,-f,

[n order to analyze the effect of an interval between two distinct frequencies. the
split-spectrum processing technique was implemented on signals containing two frequencies
frand f». Using Equation (2.12), test signals were generated with f; = 50 Hz and various f>

values for 60. 70. and 80 Hz.
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The results of implementing SSP on the test signals are shown in Figures 2.9. The
original input signals are presented in the top row. Adding a Gaussian noise of zero mean
and variance 2 to the original signal. the resultant signal with noise and its spectrum are
shown in the second and third rows. respectively. The usable frequency range for the SSP

process is obtained from the spectra of noisy signals.
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The SSP parameters used in this experiment are summarized in Table 2.1. The last
row in Figure 2.9 shows the results of split-spectrum processing. In the case (f>=60 Hz and
f>=70 Hz), the outputs of split-spectrum processing showed a reduction of noise components
while retaining the original signal. However, at other frequencies of f> the results show not
only a suppression of noise components but also loss of the original signal.

We have reviewed some limitations of the split-spectrum processing technique. For
SNR enhancement. the SSP technique has proved to be effective in noise suppression but
only under certain conditions. For example, the method fails if the signal is composed of

multiple frequencies.

Table 2.1 The parameter values used to compare the effect of f>-f; (The scaling factor is
shown to be 4 and f,=50 Hz). B stands for the limited bandwidth on split-spectrum
processing.

7, B (Hz) Af b=0" N e
60 [40.70] 1.7647 7.0588 8
70 [40.80] 17391 6.9565 24
80 [40.90] 1.7241 6.8965 30
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CHAPTER 3. MULTI-STAGE ADAPTIVE NOISE CANCELLATION

3.1 Adaptive Least Mean Square Error (LMSE) Filter

Noise cancellation algorithms with optimal filter weights can be fixed or adaptive.
depending on the prior knowledge of signal characteristics. In many cases. the complete
range of input conditions may not be known exactly or the conditions may vary with time. In
such circumstances. an adaptive system that continually seeks the optimum within an
allowed range of possibilities offers a much higher level of performance than fixed filters.

Adaptive noise cancellation (ANC) algorithms estimate the impulse response of the
filter using an iterative procedure to minimize the error between the filter output and primary
input. The simplest adaptive filtering technique uses an LMSE finite impuise response (FIR)
filter to perform the noise cancellation. Although FIR adaptive systems converge rather
slowly to an optimal state, it is nevertheless used in adaptive systems due to its simplicity and
ease of implementation.

Figure 3.1 shows a block diagram representation of a single stage adaptive filter with
reference input z,(n) and primary input d,(n). The reference mput. in general. represents a
pure noise signal if available and fixed. In conventional ANC algorithms. the reference input
is filtered and subtracted from the primary input containing both signal and noise. The filter
in Figure 3.1 is adaptive in that it automatically adjusts its impulse response to minimize the
error signal. When this algorithm is applied to ultrasonic nondestructive evaluation (NDE),

where the noise is spatially varying, the primary input and reference signals are obtained
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Figure 3.1 Schematic of the adaptive noise cancellation system for ultrasonic NDE [15].

from two adjacent positions of the transducer. u;(n) and dy(n) can be obtained from two

transducers distance ¢ apart or alternately by choosing u,(n) to be a time-delayed version of

primary input d,(n +6). In general. a measured signal can have both flaw and noise

components. Suppose the primary input signal dy(n), consists of a flaw component f, (n)

and noise component n, ().

d(n) = f, (n)+n, (n) (G.1D

and correspondingly the reference signal is expressed as a sum of flaw and noise components

f,(n) and n, (n) respectively.

w(n) = f, (n) +n, (n). (3.2

The underlying assumptions in this algorithm (summarized in Table 3.1) is that the

noise components. n, (n) and n, (n) from the grain structure are uncorrelated with both
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Table 3.1 Assumptions of correlation between primary and reference input signals made by
an adaptive noise cancellation algorithm.

Reference signal
w(n) = f, (n)+n, (n)
f fy n"l
Primary signal f4 correlated uncorrelated
d\(n) = fo, () +n, (n) n, | uncorrelated | uncorrelated

f,,! (n) and f,ﬁ (n) whereas the flaw indications fd, (n) and fu’ (n) are correlated. The mean

square error (MSE;) between filter output. y,(n), and primary input. d;(n), is given by

MSE, = Ele*(n)|= El(d, (n) - % (m))*]
= E[(f,, (0 ~ 5 (m+n, ]

(3.3)
If the impulse response of the filter is represented by Hh(n). we have
_\"(n)=hl(n)*ul(n)=hl(n)*fu‘(n)+h‘(n)* nu‘(n)=f_‘,l(n)+n_vl(n). Substituting back in Equation

(3.3), the MSE; can be written in the form.

MSE, =El(f, ()= £, 00)* J+ Eln, ()=, )?]

(34)
+2E[(f, (m)- £, (W)n, (1) —n, ()]

The optimum filter coefficients are determined when MSE; is minimized. If the noise

and flaw signals are uncorrelated, the expected value of the last term is zero. Suppose f, (n)

is simply a time-delayed version of fd‘ (n), (say f,,! (n—ny)).
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During adaptation, the filter coefficients are adjusted to h(n+n, ), and the first term
in Equation (3.4) goes to zero. The minimum error MSE; in this case is E [(n,,! (m)-n, (n))lJ,
and the filter output is close to zero. If the primary and reference inputs have both target and
noise. the filter minimizes the error El(fd, (m)—h(n)* f, (n))zJ-i- E[_(n,,x (M) —h(n)*n, ],
and the filter output has a2 lower noise component. In other words. the signal-to-noise ratio
(SNR) is increased.

Adaptive algorithms in general are based on optimizing a certain cost function. In the
case of the LMS algorithm. the cost function is the Mean Square Error (i.e. the mean square
value of the error signal). The LMSE algorithm is the simplest and the most commonly used
technique [36][37][38] for estimating the filter weights. This is achieved by adjusting the
values of the weights of the FIR filter in such a way that the cost function is minimized.
Typical methods for reaching the minimum value include the gradient and steepest descent

techniques.

The input-output relationship of the FIR filter is given by
L
G EN (3. (3.5)
n=0

where h, (k) are the time-varying characteristic filter coefficients. «;, is the reference input.

v,(k) is the output. and L is a filter length. In the steepest descent method for updating filter

coefficients. we have

by =h, +2ueun,,. k=123, .N (3.6)
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where 4 is the convergence parameter, e is the error signal, u,, is the reference input signal.

and N is the signal length. The convergence parameter plays an important role in
determining the performance of an adaptive system. Its value is important since it affects the
speed of convergence and the stability of the LMS algorithm. Since there are no general
rules for selecting the convergence factor i we use a value that is stable for a given input
signal power. In general. the normalized convergence factor [39][40][41] is selected

according to

u
=S ———. O<u<l (3.7
“ 1+ Lo~ #

where ([+L) is the number of filter coefficients and o is the input signal power. In many

applications. we need to estimate the signal power. which can be obtained as

67 =aul, +(1-a)61,, 0<a<<l (3.8)

where & is a “forgetting factor™ used to reduce the influence of the past inputs. Substituting

the normalized convergence parameter and estimated signal power in Equation (3.6). we get

2
ol gep<l. (3.9)

R =My +(I_+LE:;‘

[n the LMSE algorithm, parameters, &; x4 and L, should be chosen optimally so that

the performance of the adaptive filter is satisfactory. However, the convergence parameter u
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will depend on the design specifications and computing time. The goal of the adaptive
process is to adjust the filter coefficients in such a way that they move from any initial
condition to the minimum mean-square-error solution. Within the convergence rate margin.

the larger the value of u, the faster the convergence. but less the stability around the
minimum value. On the other hand, the smaller the value of x . the slower the convergence,

but more the stability around the optimum value. In practical applications, however, we are
dealing with non-stationary signals, and as signal conditions change. the adaptive process
must continually update the coefficients in order to track the LMSE solution. [t is. therefore.

assumed that the signals are slowly varying satisfying stationary requirements.

3.2 Multi-stage Adaptive Filter

The performance of conventional adaptive noise cancellation techniques depends
strongly on the statistical correlation properties of flaw and grain noise signals. [f these
assumptions are not fully satisfied. the algorithms result in a sub-optimal performance of the
system in improving the SNR of the ultrasonic data. In this thesis. we propose a multi-stage
adaptive filtering method to suppress the noise level in stages. Figure 3.2 shows two stages
of the proposed multi-stage adaptive noise cancellation method. The purpose of the first
stage is to obtain a signal with improved SNR and also better correlation properties, i.e.. high
correlation between flaw signal components and less correlation between the noise
components. thereby enabling significantly superior performance in the second stage. The

output of the first stage adaptive filter serves as the input to the second stage adaptive filter.
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The input-output relationship of the second adaptive filter H>(z) is the same as that
described in the previous section. The filter output y»(n) of the second stage can be

represented as

YQ(R) = h’;(n)* .Vl(n)
=h{n)*f (njrh{npen,(n) (3.10)
= f(niHn(n)

where h,(n) is the impulse response of the second stage adaptive filter. The MSE associated

with the second stage is given by:

MSE, = Elim)]= Efd,(n)- vn)?]
[ E(f,(m)~f, (n)" ]+E[(nd|(n) -n, (n))” ] G.11)
+2E[(f, ()~ £, (), (W)=, ()]

where d,(n)=d,(n)= fd‘ (n) +n, (n). The optimal filter minimizes the MSE:. As explained
in the earlier section. if f, (n) is simply a time-delayed version of f, (n). the MSE: is given
by E[(nd' (n)—n,, (n))lj. In the second stage of MANC, in general. the minimum
MSE, > MSE, because of using d,(n)=d,(n) and the filter output n, (n)<n,(n).

ensures that the MSE and SNR increase monotonically in successive stages. This treatment

can be extended similarly to m-stages, where the output can be written as
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Figure 3.2 Configuration of multi-stage adaptive noise cancellation filter (Method I).

,V,..(’l) = hm(n)* ym_‘(n) = hm(n)*fv__‘(n)-f-hm(n)*n,,__‘(n)

3.12
= f,(n)+n, (n) G142

and the minimum error is

MSE_ = E[ej,(n)]: Ekdm(n)- _v,,(n))lj
= Els, - £, )} Elim, () -n,_ny?] (3.13)
~2£[ £, (m)~ £,_ (W), (M) =n,_(n))]

where d,.(n) =d,(n) = f, (n)+n, (n) and MSE_ >MSE, _, >--->MSE, > MSE, .

Figure 3.3 shows an alternate configuration for multi-stage adaptive filtering in which
the primary and reference inputs are selected from the processed image at the output of the
first stage. The relationship between the primary and reference inputs at the first and second
adaptive filters is summarized in Table 3.2. In this method. the output of each stage is

sirnilar to Equation (3.4) and the mean square error is expressed for an M-stage system as



Primary

input d, (n)

Reference
mput u.(n)

£ .

—» H.(2) =

Z e.(n) ]

ANCSYSTEM |

36

Primary
input d. (n) f
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=
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Figure 3.3 Alternate configuration of multi-stage adaptive noise cancellation filter (Method

iD.

MSE, = Ele(n)|= Eldn)- yn)? ]

=E[(fd, (n)-f, (n))l]+E[(n,,, (n)—n, )] =12, M. G.14)
=2£[(f, (- £, (), (m)—n, ()]

such that. in this case. MSE, < MSE,.

3.3 Experimental Data and Results

The signal processing algorithms described here were applied to real ultrasonic

testing data with grain noise. The test specimen is a Ti block of 42” width. 4" length and 4~

depth shown in Figure 3.4. It contains two synthetic Ti64 2.7% Nitrogen hard-a inclusions.

Table 3.2 Relation between primary and reference inputs in the two stages in Method I

(Figure 3.3).

Primary signal Reference signal
ANCspem | d@)=dn—0) | _m(n)=dyn)
ANC system 2 d(n)=d,(n) u(n)=d,(n+6)
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which are located one inch below the surface. The signals are obtained using a 10 MHz,
0.75” diameter, and 8" focal length wideband transducer. The length of the A-scan is 1024
samples obtained at I00MHz sampling rate collected using a transducer step size of 0.008™.
The front surface reflection is eliminated. and a typical C-scan image from the sample is
shown in Figure 3.4. The bright circles near (30,30) and (30.90) represent indications of the
hard-a inclusions. The highly granular microstructure of the material generates strong
mnterference noise in the ultrasonic signal as seen in Figure 3.4-(a). Typical A-scans from 2
pixels located at (33, 28) and (33, 90) are shown in Figure 3.4-(b).

The two-stage ANC algorithm was applied to the data in Figure 3.4. Factors that
affect the performance of the algorithm are (i) distance between transducer positions dJ. (ii)
convergence rate 4 and (iii) filter length L. The performance in each case was evaluated in
terms of two parameters. namely the SNR and the correlation properties. The correlation
properties of the input data and the processed signals at the output were studied by

computing the cross-correlation coefficient

- cov(d,u)
" Jeov(d) *cov(u) |

(3.13)

where d and u are the two input vectors and cov(e) represents the covariance.

In evaluating the performance of the multi-stage adaptive filter, it is helpful to define
signal-to-noise ratio in a manner that takes into account the burst nature of the desired flaw
signal and the cross-correlation of the two inputs. In order for the adaptive LMSE algorithm

to perform optimally, we require high correlation in the flaw area and low correlation in the
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Figure 3.4 Experimental data. (a) ultrasonic C-scan data from Ti samples with synthetic
hard-¢ inclusions and (b) typical A-scans from 2 pixels located at (33. 28) and (33. 90).
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background pixels. Although there are several defmitions for signal-to-noise ratio (SNR), a
modified SNRy,. function that is focused on the flaw signal [15] (see Figure 3.5) is defined

as

( | M2 1
— Yy
l 5 = - ' 2
SNR,,,, =10lo 7 = "I’ |- (3.16)
— 3 v+ 2‘, v (k)
‘Wd‘ k=1 L-Md: k=‘"&| *V,

where M is the target location. N is the target signal duration, M, and M, define the target

signal duration comprising N; data points. These parameters are obtained manuaily through a

visual examination.

Amplitude

50

|
l
| |
o M :‘z

100 200 300 400 3500 600 700 300 900 1000 (100

100}

Time

Figure 3.5 Parameters L. N;, M, , M, , and M used in definition of SNR at a flaw.
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3.3.1 Split Spectrum Processing Implementation

For the SSP implementation. the parameter values described in Chapter 2 are
summarized in Table 3.3. The result of implementing the SSP algorithm on the hard-cc
inclusion signal is shown in Figure 3.6. The results of SSP on both grain as well as flaw
signal show that the method is not applicable to this problem. Although the noise seems to
be somewhat reduced. the processed noise signal contains only two significant peaks that can
be misinterpreted. Therefore. it is necessary to use the correlation properties of hard-o. and
grain reflections to suppress the noise component. The following sections describe the
performance of a muiti-stage adaptive noise cancellation scheme on the data shown in Figure
3.4. A detailed study of the effect of the parameters — filter length, learning rate. and

transducer distance on the performance — is also described.

3.3.2 Effect of Filter Length

The MAF systern was implemented using FIR adaptive filters of varying filter lengths

in the first and second stage represented by L; and L., respectively. Three combinations of

Table 3.3 The parameter values for SSP method.

flawer fnpper 8 T NGwm A'f 8

Hard- I0MHZz ISMHz | 3MHz 10.23us 31 100KHz | <00KHz

Grin IOMHz I3MHz | 3MHz 10.23us 3t 100KHz | $00KHz
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Amplitude

(e)

Figure 3.6 The left side figures show (a) input signal (target+noise), (c) spectrum. and (e)
output signal for Hard-a signal. The right side figures show (b) input signal (noise only). (d)
spectrum. and (f) output signal for grain noise signal. The mput signals are located at (30, 90)
and (50.87) in Figure 3.4.
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[Li, L:] were selected namely, (i) [Li, L] = {3, 5], (i) [Li, Lz} =[7. 71, and (iii) [Li, L2] = (7,
9] using a learning rate g;=u>=0.1. The reduced noise signals at the output of the first and
second stage are plotted in Figures 3.7 to 3.9. The primary and reference input signals were
captured with transducers placed 0.016" apart. Both signals contain flaw and grain noise
components. The results were evaluated using improvements in the SNR and correlation in
each stage, which are summarized in Table 3.4. The results clearly show the advantage of
using a two stage adaptive filter. The choice of filter length L; does not greatly affect the

result of the output of the first stage in terms of both SNR and correlation coefficient p.

However. the results indicate that the choice of L, has a significant effect on the SNR of

primary reference

Amplitude
Amplitude

200 400 600 800 1000 200 400 600 800 1000
Time Time
stage-1 stage-2
100 100+ |
> S )
g 50 = 50t
£ o0 s 0 -
z =
.50} < so}
-100 -100
200 400 600 800 1000 200 400 600 800 1000
Time Time

Figure 3.7 Results using adaptive filtering on signals containing both flaw and noise
components (filter parameter L;=3, L,=5, u=1=0.1).
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Figure 3.8 Results using adaptive filtering on signals containing both flaw and noise
components (filter parameter Li=L,=7. y;=x>=0.1).
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Figure 3.9 Results using adaptive filtering on signals containing both flaw and noise
components (filter parameter L,=7, L.=9, t;=4=0.1).
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Table 3.4 SNRp. and cross-correlation coefficients in multi-stage adaptive
cancellation.
Parameters SNR,_(dB) p
L; L, Input Stage-1 | Stage-2 | Stage-l1 | Stage-2
3 5 27.6502 28.1205 | 37.0675 | 0.8388 | 0.8919
7 7 27.6502 29.0110 | 41.1783 | 0.8388 | 0.9014
7 9 27.6502 29.0110 | 42.9493 | 0.8388 | 0.9014

Note: o represents the correlarion between adiacent flaw signals at the end of stagel and stage 2.

noise

the second stage output signal. The second stage SNR columns show a significant jump in

the noise reduction and the last columns also show increases in the correlation between the

flaw signals. Similarly. the results obtained using noise only signals in Figure 3.10 show

significant reduction in noise level. The cross-correlation coefficient in this case for grain

noise components was reduced from 0.6534 in first stage to 0.4665 at the end of the second

stage.

3.3.3 Effect of Learning Rate

In general. the time complexity of the ANC system depends on the learning rate uof

the LMSE algorithm. Variable learning rates were applied to the MAF system. Using L;=7

and L,=9. which was shown to be optimal in the previous experiment. convergence rates

4=0.01, 0.05, and 0.1 were tried. The results are summarized in Table 3.5. Once again. this

parameter has a greater influence on the performance only in the second stage.
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Table 3.5 SNRg. and cross-correlation coefficients in multi-stage adaptive noise
cancellation (L;=7, L,=9 and g, is learning rate at each stage where i=1,2).
Parameters SNR,.(dB)
i 15] Input Stage-1 Stage-2 | Stage-l | Stage-2

0.01 0.01 27.6502 | 274270 | 25.8304 | 0.8388 | 0.7379

0.05 0.05 27.6502 | 29.1195 | 38.9023 | 0.8388 | 0.8511

0.1 0.1 27.6502 | 29.0110 | 42.9493 | 0.8388 | 0.9014

0.05 0.1 27.6502 | 29.1195 | 45.4681 | 0.8388 | 0.8511

Note: prepresents the carrelation between adjacent flaw signals at the end of stage! and stage 2.

3.3.4 Effect of Transducer Distance

The degree of correlation associated with the noise components is highly dependent

on the distance J between the transducer positions from which the reference and input signals
are acquired. Too small a value of J will result in higher correlation between noises. whereas
too large a value of O will make flaw signals uncorrelated. The ANC system was
implemented using FIR adaptive filters with varying values of &, and the results are
summarized in Table 3.6. The optimal SNR improvement was obtained when the distance
was 0.016" (two pixels). As the distance between the two transducers is increased. the SNR
of output at second stage is decreased. This shows that the value of & should be chosen
carefully for optimal performance of the MANC algorithm. This result can be further
confirmed by examing the correlation of noise signals in the C-scan image. Both the
normalized auto-correlation and cross-correlation parameters were estimated and are plotted

in Figure 3.11 for two noise signals that are 2 pixels apart. This translates to a physical

distance of 0.016”. The cross— correlation function reveals that the grain noise signals are
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Table 3.6 SNRp,. comparisons for various distances between two transducers for multi-
stage adaptive noise cancellation.

Distance (9) 2 4 6 8
Input SNR 27.6502 | 27.6502 | 27.6502 | 27.6502

Stage-1 SNR 29.0110 | 28.4862 | 28.0523 | 30.1740

Stage-2 SNR 429496 | 38.8604 | 35.9458 | 30.8850

sufficiently uncorrelated to satisfy the assumptions. The auto-correlation property is also

estimated to check its closeness to an impulse.

3.3.5 Method II Implementation

Adaptive noise cancellation was also implemented using the alternate configuration
for multi-stage adaptive filtering process shown in Figure 3.3. where both the reference and
primary inputs for second stage are obtained from the processed first stage data. Figure 3.12
describes a flow diagram for implementation of the second configuration. The filter
parameters used here were Li=7. 4;=0.1 in the first ANC system and L,=9. =0.1 in the
second stage. The transducer distance & was 2 pixels (0.016™) in both ANC stages. As
expected the improvement in performance in terms of the second stage output SNR is
significantly higher. The SNR increased from 29.0110 dB in first stage to 47.8215 dB at the
end of the second stage. Figure 3.13 shows the raw and processed A-scans using the second
configuration. However. the disadvantage of this configuration is that the two stages have to
be implemented sequentially. In contrast, the first configuration (Figure 3.2) can be

implemented in an online manner.
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Figure 3.11 Normalized auto-correlation and cross-correlation.
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Figure 3.12 Flow diagram for Method II.
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Figure 3.13 Results using Method II multi-stage adaptive filtering on signals containing
both flaw and noise components (filter parameter Li=7. #;=0.1, L,=9. 1=0.1).
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3.4 Adaptive Wavelet De-noising Method (AWDM)

Wavelet transform [42][43][44] is a recent analysis technique that is becoming
increasing popular in many signal processing applications. The mam characteristic of the
wavelet transform is its multi-resolution decomposition of the mformation contained in a
function or signal at different scales. In other words. wavelet analysis allows the use of
longer time intervals where we want more precise low frequency information and shorter
time intervals at high frequency information to get a good time resolution.

As shown in the time-frequency plane in Figure 3.14. the basis functions of wavelet
transform are localized in both frequency (scale) and time. in contrast to Fourier basis
functions that are localized only in frequency. This multi-scale or multi-resolution analysis
(MRA) is based on the following properties. First. the spanned signal spaces are nested from

the null space to the full space. which can be written as

{0}=v_c--cV,cV,cV,cV,cV,c---cV. =L(R). (3.17

The above equation implies that V; consists exactly of all the functions in V, compressed by
a factor of 2. V, consists of the functions in V, compressed by a factor of 2* =4. V
consists of the functions in V, dilated by a factor 2, and so on. For every pair of spaces
{V,.V,..}. we can define an orthogonal complement W, from which the higher space can be

recovered. This relation can be expressed as
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Figure 3.14 Basis function resolutions in time-frequency plane, (a) windowed Fourier
Transform. and (b) Wavelet Transform.

V,eW,=V,. jeZ (3.18)

The symbol *®" in Equation (3.18) implies that the vectors in W, plus the vectors in V, can

generate all vectorsin V_;. V and W, are orthogonal. The basis for each nested subspace

V, are derived from a scaling function ¢(¢r). This scaling function ¢(r) and its translation

@,(t) = ¢ (t — k) form an orthonormal basis for V, in Figure 3.15 and can be written as

v, =sp:m{¢k(t)}. Hence, any function f(r)e V, can be expressed as f(f) = Zakw,‘ (r). A
€

two dimensional family of functions is generated from the dyadic scaling function according

o @, =2/"*p(2!(t—k)) so that v, =spanka 1 (t)}. The details in the signal reside in the
k

subspaces W, which are spanned by dilates and translates of the wavelet function ¥, (¢).

Furthermore. it is required that the scaling functions and wavelets be orthogonal.



Figure 3.15 Decomposition using a multiresolution analysis.

The original wavelet shrinkage algorithm of Donoho and Johnstone [45]{46][47] has
found many applications in data de-noising. Noise cancellation using wavelet shrinkage is
one possible approach for ultrasonic nondestructive evaluation. In this research. the wavelet
shrinkage de-noising method can be treated as a preprocessing step for the multi-stage
adaptive filter as shown in Figure 3.16. The main idea underlying wavelet shrinkage de-
noising relies on wavelet coefficient thresholding. A standard model of noise in signals is

additive Gaussian white noise that can be modeled as

v=f+z, i=0l..n-L (3.19)

where f are samples of f and z, are independent and identically distributed (iid) N(0.I)

random variables. For this model, Donoho and Johnstone showed in [45][47] that orthogonal

wavelet transforms provide a powerful tool in recovering the original samples f, by applying
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Figure 3.16 Configuration of adaptive multi-stage adaptive noise cancellation filter
(AWDM).

a simple thresholding rule to the noisy wavelet coefficients. The wavelet shrinkage de-

noising procedures can be summarized as follows:

L.

Decomposition.
Apply the discrete wavelet transform to a signal in Equation (3.19) and get the

wavelet coefficients that can be defined as
WT(y,)=WT(f)+WT(z,) (3.20)

where WT stands for discrete wavelet transform, which is a linear operation. Hence.

ud
WT(z,) ~ N(0J) is also a Gaussian.

Threshold detail coefficients.
The main part of wavelet based de-noising is thresholding, which simply assigns

wavelet coefficients with amplitudes less than a certain threshold to zero. In order to
choose the threshold value, it is defined by 4 =0',/2[ogn where n is a signal length

and o~ is the noise variance of the wavelet coefficients at the finest level [42][48][49].
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In this research investigation, the level-independent estimates [S0] of A, ie.. one
common estimate for all the multiresolution levels in the wavelet decomposition. is
obtained by including all the detail coefficients.
The threshold calculation method involves selecting the threshold as a
quantile of the empirical distribution of the wavelet coefficients. In order to perform

the thresholding operation. a nonlinear soft thresholding operation [51] may be

applied as

w, —A. w2 A
w,={ 0 w|<4 (3.21)
w, +A. w, <-4

3. Reconstruction.

Using the inverse DWT, the threshoided wavelet coefficients are transformed back to

obtain the filtered estimate of function. f, of f,.

3.4.1 Experimental Results with AWDM

An adaptive wavelet de-noising scheme was implemented in a wavelet transform
domain using the coefficient shrinkage method. The block diagram (AWDM) for the multi-
stage adaptive filtering process is shown in Figure 3.16, where both the reference and
primary inputs for the first stage are preprocessed in wavelet transform domain. The scaling

function and mother wavelet used in AWDM is a Daubechies wavelet [52] (in Figure 3.17)
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Figure 3.17 Daubechies’ wavelet (a) scaling function and (b) mother wavelet.

with decomposition level 3. The filter parameters used here were Li=7. 14=0.1 in the first
stage and L,=9. 1,=0.1 in the second stage. The transducer distance & was 2 pixels (0.016™)

in the adaptive de-noising method. As expected, the improved performance in terms of the
second stage output SNR is significantly higher since the primary and reference signals are
prefiltered in the wavelet domain.

For comparison. the typical wavelet shrinkage de-noising method is applied to the
primary and reference signals. As seen in Table 3.7, the SNR increased from 27.6502 dB in
reference input signal to 38.97 dB at the end of the wavelet shrinkage de-noising step. The
adaptive de-noising method also shows the improvement in terms of SNR with 78.4109 dB.
Also, the wavelet shrinkage de-noising results are comparable to that obtained using the
multi-stage adaptive noise cancellation method. In addition, the MANC if followed by the
prefiltering process (WSD), results in a better performance. Figures 3.18 and 3.19 show

results of the adaptive wavelet de-noising method.
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Figure 3.I18 Results using adaptive filtering on signals containing both flaw and noise
components with wavelet shrinkage de-noising method (filter parameter L;=7. L:=9.
ur==0.1), (a) primary input, (b) reference input, (c) wavelet shrinkage de-noised signal
with a primary input, (d) wavelet shrinkage de-noised signal with a reference mput, (e) first
stage output. and (f) second stage output.
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Figure 3.19 Results using adaptive filtering on signals containing noise components only
with wavelet shrinkage de-noising method (filter parameter L\=7. L,=9, u;=>=0.1), (a)
primary imput. (b) reference input. (c) wavelet shrinkage de-noised signal with a primary
input, (d) wavelet shrinkage de-noised signal with a reference input. (e) first stage output,
and (f) second stage output.
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3.4.2 Stopping Criterion

The stopping criterion is an important issue in multistage adaptive noise cancellation
method. Since an iterative method computes successive signal-to-noise-ratio of a MANC
system, a practical test is needed to determine the number of stages required before the
algorithm is stopped. In this research, the stopping criterion, typically, is based on the SNR
value. The following simple stopping criterion was implemented using a user—specified

threshold value, 6.

1. Select a stopping threshold. 6.

[
v

Compute SNR; at each stage i (i=1.2....).

3. IfR,, = ;ﬁ’ > 8. stop.

1+l

Else go to the next stage.

The stopping threshold value (6) used in this algorithm is [.5. The above stopping

criterion was applied to the multistage adaptive noise cancellation method. The SNRs are

summarized in Table 3.8. For example, the ratio between the output of stage-1 and the

Table 3.7 SNRpu.w comparisons for a reference signal with wavelet shrinkage de-noising
(WSD) method. multistage adaptive noise cancellation method (MANC). and adaptive
wavelet de-noising method (AWDM) (L=7, L.=9 and y;=w>=0.1).

INPUT SNR | WSD | MANC | AWDM’
SNRgaw 27.6502 3897 | 429493 | 78.4109
Note: * represents the second stage
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output of stage-2, R,, . is 0.70. Based on the above stopping criterion, the MANC system
stopped after 3 stages with the SNR ratio value R;, =0.68. Consequently. the algorithm was

also stopped after 3 stages. Figure 3.20 shows the best filtered signal with M=3.

Table 3.8 Stopping criterion comparisons for the multistage adaptive noise canccllation
method (MANC), (Li=Ls= Ls= L4=7 and yi=thr=p3=14,=0.1).

Reference Stage-1 Stage-2 Stage-3 Stage-4
SNR; 30.3036 29.0505 41.1190 60.4678 18.2204
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Figure 3.20 Results using MANC on signals containing both flaw and noise components
with M=4 stages. (filter parameter L= Li=L;=L4=7 and y;=to=u;=4,=0.1).
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CHAPTER 4. SIGNAL CLASSIFICATION - ONE DIMENSIONAL SIGNAL

PROCESSING

A second focus of this thesis is the classification of ultrasonic signals obtained in the
inspection of welds.  Automatic signal classification (ASC) systems are becoming
increasingly popular in commercial signal analysis applications. The major steps in an ASC
system consist of (i) preprocessing, (ii) feature extraction. and (iii) classification. A number
of methods have been developed over the years for extracting signal features from time.
frequency, and spatial domains [53][54][55]. In signal classification systems. feature
extraction serves to reduce the data length and identify discriminatory properties in signals of
different classes. Through selection of the most effective features. the dimensionality of the
measurement vector can also be reduced. which in turn can speed up the subsequent
classification process. The most commonly used features consist of the Fourier series
coefficients. Frequency analysis yields a representation of the frequency content and
distribution of a signal. The Fourier transform maps a signal in the time domain into the
frequency domain using complex exponential basis functions. The analysis equation of the

Fourier transtorm is given by,

xnH=[_ e dt 4.1)

The power of the Fourier transform [ies in its capacity to decompose a signal into its
constituent frequencies. Since the integral extends over all time, there is a loss of time

information in the spectra. The exponential basis functions used in the Fourier transform are
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infinite in duration. This leads to spreading of any time localization of abrupt changes in the
signal over the entire frequency axis. Therefore, any time localization of the input signal is
lost when the magnitude spectrum is used.

A classic example is the Fourier transform of an impulse signal. In the time-domain,
the dirac-delta is localized. but the magnitude spectrum of the delta function is spread out
over the entire frequency spectrum (Figure 4.1). The magnitude spectrum of the Fourier
transform does not have any information regarding the time of occurrence of the delta
function. In ultrasonic nondestructive evaluation. signals contain reflections from
discontinuities that manifest as abrupt time-localized changes, resulting in time-varying
spectral characteristics. In fact. Fourier transform analysis is not appropriate for representing
non-stationary signals.

A good way of circumventing this drawback of Fourier analysis is to introduce a
window in the time domain. By sectioning parts of the signal and computing the Fourier

transforms of these windowed signals. a measure of time can be introduced in the Fourier

A A

x(t) Abs(X(D)|

Figure 4.1 The dirac-delta and its Fourier magnitude spectrum.
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analysis. This is the concept of the Short-Time Fourier Transform (STFT) [56], which is one
of the early methods used in time-frequency analysis.

STFT uses a single window to compute the time-frequency spectrum of a signal. The
mput signal is first windowed in the time domain. The Fourier transform of the windowed
sections of a signal constitutes its STFT. Several windows such as the rectangular window
and the exponential window have been proposed depending on the problem at hand. The

STFT S(¢.Q) can be defined by the relation.

St.Q)= J'_'_ XT)g * (r—-1)e ¥ dr (4.2)

where g(z) is the window function.

For a discrete time signal. the STFT is defined as

S(h.w) = z.r[m]g[n—mle”"'" (4.3)

m=ees

The STFT represents the local behavior of the signal x[n] as observed through the
sliding window g[n-m]. The STFT analysis can be thought of as a filtering operation on the
signal using a modulated filter bank. The analysis window. g[n], represents the filter and the
exponential basis functions modulate this filter to obtain a modulated filter bank. On a time-
frequency plane the STFT amounts to sampling the signal uniformly on both the time and

frequency axes. The time-bandwidth product of the window used corresponds to the areas
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shown in Figure 4.2. The time-bandwidth product has a lower bound provided by the

“Heisenberg uncertainty principle”. This means that

(rime resoultion) x ( frequency resolution) = AIAf 2 % +.4)
4n

The major disadvantage of the STFT is the trade-off in time-frequency resolution.
Since the time-frequency resolution remains the same for all frequencies in Figure 4.2, a
signal can be studied with either high time or frequency resolution but not both. If the time-
resolution is desired. then the window chosen is narrow. This results in a very poor
frequency resolution and vice-versa. This property makes STFT analysis critically dependent
on the window size and is not suitable for analysis of non-stationary signals. such as
ultrasonic or biological signals. In the case of such signals. a sharper time resolution with a

smoother frequency resolution window is needed for higher frequency components. and vice-

Figure 4.2 Time-frequency plane of the STFT.
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versa. Recently, a more effective technique based on wavelet transforms has been developed

for analyzing ultrasonic waveforms with good time-frequency resolutions.

4.1 The Discrete Wavelet Transform (DWT)

Wavelet Transform (WT) techniques are finding increasing use in many applications
including image compression [57], signal processing [58][59], and solution of partial
differential equations [60] with time-varying spectra. The WT is defined in terms of basis
functions obtained by compression/dilation and shifting of a ‘mother wavelet’.

Mathematically, the wavelet coefficients of a function f{t) are given by
WT, (t.a) = [ f (), ()dT 4.5)

where

[ t—-7T
h  =—H — 4.6
,—-a'{ . ) (4.6)

Equation (4.6) is the shifted and compressed version of the mother wavelet A(z). The time-
shift is 7 and the frequency scale is . The mother wavelet h(r) can be considered as a
bandpass function centered on the scale frequency and is translated in time to select the part
of the signal to be analyzed. Inner products of signal f{t) with translated and dilated versions

of wavelet h(t) in Equation (4.5) indicate the contribution of the wavelet to a signal. Hence,
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the wavelet transform represents the correlation between the signal f{z) and scaled versions of
a prototype, the mother wavelet. The scaling of the prototype function involves contraction
and dilation of the signal, and the translation involves shifting this function along the time
axis.

Wavelet analysis allows the use of long time intervals where we want more precise
low frequency information. and shorter regions where we want to analyze high frequency
information. This is the biggest advantage of the wavelet representation in signal processing

applications. Figure 4.3 shows the coverage of the time-frequency plane using the Fourier

(@)
Fourier STFT Wavelet
A
)
13
o
3
&
2
—_—
time
(b)

Figure 4.3 (a) Time-frequency plane of the WT and (b) comparisons of FT, STFT, and WT.
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transform, STFT, and wavelet representation. As shown in Figure 4.3, the wavelet transform
also performs multi-resolution analysis of signals using varying window sizes.

[t is convenient to view the decomposition as passing a signal s[n] through a pair of
filters h{n] and g[n]. The pair of filters h[n] and g[n] corresponds to the half-band lowpass
and highpass filter, respectively, and are called the quadrature mirror filters (QMF) in the
signal processing literature [61]. By downsampling the filtered signal by two (i.e.. dropping
every other sample) as shown in Figure 4.4. the wavelet transform is computed by filtering
the signal with a set of filters (h[n] and g[n]) and subsampling the output of each filter in
order to sample the multi-resolution signals at their respective Nyquist frequencies. The
signal s[n] is first passed through a halfband highpass filter g[n] and a lowpass filter h[n].
After filtering, half of the samples of the two output signals are discarded by downsampling
since the signals now have a bandwidth of 7/2 radians instead of m. The output of each of the

filters after subsampling by 2 is expressed as

YuelK1= Y, sinlg[2k —n] @.7

Vinlk1=Y slnlh[2k —n]. (4.8)

The relationship of h[n] and g[n] can be written as
h[L~1-n]=(-1)g[n] 4.9)

where L is the length of the filter.
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Figure 4.4 The wavelet decomposition tree.

Recursive filtering using this filter bank produces the wavelet coefficients at the
output of the highpass filters and the detail signal at the output of the final lowpass filter. For
level 3 wavelet decomposition (Figure 4.4), the DWT coefficients are concatenated at every

level and can be expressed as

Cpwr =WT3,, WT3., WT2. WTl,] (4.10)

where DI and CA stand for detail information and coarse approximation. respectively.
Figure 4.5-(a) shows an ultrasonic crack signal using a 5 MHz transducer at a 60 degree
angle and 25 MHz sampling frequency. The signal length is 512 points, and its DWT
coetficients using Daubechies wavelet [62][63] of order 4 (Figure 4.6) is shown in Figure
4.5-(b). In general. there are no deterministic criteria to chose the mother wavelet. The

selection of wavelet depends on data distribution, signal shape and wavelet properties
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such as symmetric property or orthogonality. Therefore, in this research investigation.
Daubechies wavelet is chosen as a mother wavelet since the signal shape is asymmetric and
Gaussian type. As can be seen in Figure 4.5, it is convenient to analyze the relation of each
frequency band in wavelet transform domain. The main energy of the signal appears in [1/8.

1/2]. which corresponds to the frequency range of 1.5625 MHz to 6.25 MHz.

4.2 Feature Selection

The objective of feature selection is to find the minimum number of features with
maximum discriminatory information. A number of feature selection algorithms in pattern
recognition have been developed and applied to automated signal classification applications.
The techniques for feature extraction can be categorized into automated and manual
techniques. Examples of automated feature selection techniques are the ID3 decision tree
[64] or cost optimization techniques. Typically, cost optimization functions are based on
Entropy [63] of the data or the fisher linear discriminant (FLD) function [66].

In the manual feature selection case. the feature vector is selected from the significant
DWT coefficients. In Figure 4.5. the energy of the ultrasonic signal is seen to be
concentrated in certain frequency bands and in general. coefficients in selected frequency
bands can be a good candidate for a feature vector. A number of supervised and
unsupervised pattern recognition algorithms have been applied for the classification of
multidimensional signals. The K-means clustering algorithm [67] was one of the most widely

used techniques for partitioning feature space. More recently, neural networks [68] have
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proved to be extremely effective in signal classification, largely due to their ability to
generate arbitrarily complex decision boundaries.

In this research, the multiplayer perceptron (MLP) was trained with back propagation
learning algorithm to classify the signals [69][70]. The simplest model of the perceptron
network is the single layer perceptron. which consists of one input layer and one output layer.
Since the capabilities of a single layer perceptron are limited to linear decision boundaries.
this network is limited in real world applications. However, by cascading perceptrons in
layers. we can implement complex decision surfaces. For example, Figure 4.7 illustrates the
architecture of the two-hidden layer MLP network.

In MLP network architecture, an activation level is computed as shown in Figure 4.8.
The MLP networks consist of a set of simple nonlinear processing elements that are arranged
in layers and connected via weights. The nonlinear sigmoid function is bounded in [0.1] and

is expressed as

f@= (7o (4.1D)

where the parameter A determines the slope of sigmoid function. The input vector
[=(l.[,,....I,) is fed to the input layer of the network. In order to compute the values at

the hidden and output layer nodes. the formulations can be written as

N
Hll = I{zuq[l ) - j=1727~”vlvl (4‘12)
=l
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Input Layer Hidden Layer1  Hidden Layer2 Output Layer
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Lii=t2...8y  Hljj=t12..8t H2kk=12..52 Ouni=12..N3

Figure 4.7 The multiplayer perceptron architecture with two hidden layers.

Yl
H2, = f| Y v, HI, ) k=12....N- (4.13)
=t
yI
0,=f [Zwufi 2k).- [=12,...N; (4.14)
k=l

The traming of a multiplayer perceptron is usually done by using the back-propagation
learning algorithm. a gradient-based iterative algorithm in the learning error that is
propagated backwards through the network. Accordingly. the weight update equation in the

back-propagation algorithm is given by

wi (n+1) =wh (n) + 78} (n)xi™ (n) (4.15)

where 77 is a learning rate parameter, 6;‘ (n) is the local gradient for node j in layer &, and

x;"(n) is the output of node j in layer k- at the time instant .
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Figure 4.8 An example of nonlinear processing.

4.3 Application to Weld Inspection Data

Test welds were fabricated with induced discontinuities. The welded test plates were
24 x 24 x | % - inch thick HY-80 steel. A gas metal arc welding (GMAW) process was used
to fabricate the plates. The following types of defects were induced in these test welds:
porosity. slag, lack of fusion. and crack. Figure 4.9 shows a general scanning procedure and
a geometry for a test plate. The transducer was moved along the longitudinal axis of the
weld. [n order to ensure coverage of the defect area, the test sample plate was scanned from
either sides of the weld. referred to as north and south views.

A database comprising C-scan images using an automated scanning system was
generated using a 5 MHz transducer. 60 degree angle beam. and a sampling frequency of 25
MHz. Figure 4.10 shows typical C-scan images from each class. The horizontal and vertical
axes correspond to the axial and circumferential positions of the transducer on the sample

plate.
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Figure 4.9 The scanning procedure and test plate geometry.

From the known positions of the machined discontinuities. the spatial coordinates and
time gates of the A-scan were first computed. With a sampling frequency of 25 MHz. the
sampling period T is 0.04 us. Once the start and end time gates were identified. a signal of
512 samples [20 ~ 21 us] was generated according to the procedure shown in Figure 4.10.
The metal path with time of flight [20 ~ 21 ps] is [1.26 ~ 1.323"] with sound velocity 0.126
inch per microsecond. In practice. UT weld inspection signals contain multiple indications
and in order to classify each indication. the time segment chosen is around [0 or [5 us.

In order to keep the signal length constant at 512 points, a Gaussian weighting function
centered at the peak helps de-emphasize other indications at the rear extremities of the gate.

Therefore. the windowed signal y;[n] can be expressed as

y[nl=xinle™* (4.16)
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Figure 4.10 The overall implementation procedure for training database.

The value of o, the shape of the Gaussian window. depends on time duration of the time

window selected. After segmenting, the signal yi[n] is normalized to get y»{n] expressed as

[ L @.17)
- max| Y [n]l

The DWT coefficients for y-[n] are computed by Equation (4.5) and a feature vector
consisting of DWT coefficients [81 ~ 220] is used as input to classify a neural network. The
distribution of A-scan signals in four classes is summarized in Table 4.1. Two hundred
signals (50 signals from each class) were randomly chosen to be included in the training

dataset to train the network. The remaining signals in the entire dataset were used as test



Table 4.1 Distribution of A-scan signals in each defect.

76

Crack

Porosity

Slag

Lack of fusion

Number of signals 155

52

132

379

data. Each windowed signal was first normalized, and the discrete wavelet transforms were

computed. In a feature selection stage, the coefficients were chosen between 81 to 220 on

DWT domain. The coefficients correspond to the frequency bands [1.9531 ~ 5.3711] MHz.

The results observed at each step in Figure 4.10 are shown in Figure 4.11. The feature

vectors consist of 140 DWT coefficients requiring 140 input nodes in the MLP network. The

Amplinde

Amplitude

©

Amphiude

R

b [ tan Xa X0 400 g 400
Time
(®)

Amphiude

DWT coefficients
(d)

Figure 4.11 An example signal corresponding to each step of Figure 4.7, (a) raw signal, (b)
gated signal and window function, (c) de-noised and normalized signal, and (d) DWT.
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network also consisted of two hidden layers with 40 nodes in the first hidden layer, 12 nodes
in the second hidden layer, and 4 nodes in the output layer corresponding to crack, slag,
porosity, and lack of fusion.

The neural network was trained and the performance was tested on 28 C-scan images
not used in training. While each A-scan from the image was preprocessed, the feature vector
of DWT coefficients was computed and used for inputs to the neural network. In the neural
network-generated pixel by pixel classification image, cracks are represented in red, lack of
fusions are represented in green, slags are represented in cyan, porosity is represented in
yellow, and background signals are shown in blue. A precise quantitative measure of the
classification performance cannot be given for this database because only the class of regions
is known rather than the class of every single A-scan. The classification of each A-scan in
the ROI was noted, and the final classification of the ROI was based on the histogram of the

classification image. Figure 4.12 shows a typical classification image and the corresponding

Final call based on histograms is Crack

awee
R
s T
£ 7
2
© R
H
«a O
[
‘-
[
ToE
[
26 24 22 2
Wave number
(a) (b)

Figure 4.12 (a) Classification image of ROI and (b) corresponding histogram (I-crack, 2-
slag, 3-porosity, 4-lack of fusion, and 5-unknown).
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histogram. The histogram shows the number of pixels in the ROI assigned to each of five
classes: crack, slag, porosity, lack of fusion, and unknown. The “unknown” class indicates
that the neural network could not classify the signal into any of the four classes
unambiguously. Based on the histogram. the final classification of the ROI in this example
(Figure 4.12) is “crack™. Figure 4.13 and Figure 4.14 show the input C-scan image and
neural network-generated classification images. Table 4.2 is summarized for C-scan

classification results.

Table 4.2 Summary of classification results for individual C-scan using DWT coefficients.

Crack | Slag | Porosity | Lack of Fusion | Total

Crack 7 717
Slag 7 717
Porosity 3 l 3 377
Lack of Fusion 7 717

24/28
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Figure 4.13 The typical C-scan image for (a) crack, (b) lack of fusion, (¢) slag, and (d)
porosity.
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Figure 4.14 The neural network-generated classification images of Figure 4.13, (red =
crack, green = lack of fusion, cyan = slag, yellow = porosity, purple = unknown, and blue =
background).
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CHAPTER 5. SIGNAL CLASSIFICATION —- MULTIDIMENSIONAL SIGNAL

PROCESSING

Ultrasonic signal classification systems currently used are based on processing
individual A-scans. Even though these approaches show reasonable success, a single A-scan
signal itself cannot represent a flaw in time, space. or transform domain. Another drawback
of these approaches is that they do not incorporate the effect of beam spread. A better
approach is to analyze a neighborhood of signals prior to making a classification decision.
Such an approach provides a better estimate of the dynamics in the signal. In the previous
chapter. a work on classification of a group of A-scans using discrete Wavelet transform
(DWT) coefficients has been shown where the variance of a group of A-scans in a
neighborhood is computed. Although computationally simple. this technique does not capture
all the characteristics of the signal. In this research. a new classification scheme, based on
classifying a set of B- and B’-scans. is presented to combine these results to obtain a final
classification for a flaw.

A multidimensional signal can be modeled as a function of M independent variables
where M >2. In this chapter, we are concerned primarily with two- and three-dimensional
discrete ultrasonic data. In ultrasonic inspection. a piezoelectric transducer is used to send
high frequency sound (ultrasonic) wave into the test sample. Discontinuities in the sample
reflect the energy that is received by the transducer and converted into an electrical signal
that varies with time. The result is a one-dimensional time domain signal called an A-scan.

In the inspection of a weld, a two-dimensional scan of an area around a weld (Figure

5.1) is typically done by acquiring one A-scan at each spatial location, resulting in a three-
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Figure 5.1 Inspection geometry for ultrasonic weld inspection.

dimensional done by acquiring one A-scan at each spatial location. resulting in a three-
dimensional volume of data represented by Z(x.y.r). where (x. y) represents the spatial
coordinates of a transducer and ¢ is the time axis. An image of the sample obtained by
presenting the peak value of the A-scan at each position (x. y) is called the C-scan. A
collection of A-scans along a single line of the C-scan image is referred to as the B-scan
image. In weld inspection, the set of A-scans obtained by scanning perpendicular to the weld
at y=yp is know as a B’-scan and can be represented as Z(x.yq.r), while that obtained by
scanning parallel to the weld at x=xp is known as a B-scan represented by Z(xy, vr). A C-
scan image shows the plane view of the test specimen. Figure 5.2 shows an example of C-
scan, B-scan and B’-scan image representations of weld inspection data. The B- and B’-scan
images illustrate the changes in the A-scan as the transducer scans the flaw. The axes on
these images represent time and distance (x or y). The B-(axial scan) and B’-scan

(crcumferential scan) represent a cross-sectional view of the object on a plane that is normal
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Figure 5.2 Typical C-scan, B-scan and B’-scan images.

to the surface of the probe. These images contain significant discriminatory information
between different types of flaws. For instance, the reflection obtained from planar flaws
(cracks) tends to have a sharper envelope transverse to the weld but a larger envelop along
the weld, while those from volumetric flaws (slags and porosities) tend to have a larger
envelope along both spatial directions. Further, the signals from planar flaws have different
spatial variations from that of volumetric flaws. Thus, a classification scheme using
information in the A-scans in a neighborhood is more powerful than previous schemes based
on individual A-scans.

In order to analyze the information contained in a three-dimensional volume of data,
this thesis investigates the feasibility of using two- and three-dimensional transform-based

methods for feature extraction. Using the overall approach of feature extraction followed by
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classification of the feature vector, the problem is reduced to one of compressing the
information into an appropriate feature vector. The next section describes the application of

two-dimensional Fourier transforms to the B- and B’-scan image data.

5.1 Two-dimensional Fourier Transform

A simple feature extraction approach for images is the two-dimensional discrete

Fourier transform (DFT) [71][72] given by

M-1N-1
Flu,v)=— Y'Y f(x yyexpl- j2muc! M Jexpl- j2vy i N] (5.1)
MN 335
where « =0.L2....M —1. and v=0.12,.... N —1. I[ngeneral. f{x,y) represents an image in the

spatial domain. The variables « and v are frequency variables. In the B- or B’-scan image
representation. f{x,y) can be replaced by f(x.r). which is a function of two discrete (spatial and
time) variables x and . The two-dimensional DFT plays a critical role in a broad range of
image processing applications. The magnitude and phase spectrum used in two-dimensional

feature extraction can be written as, respectively,

|Fe.v)| = Re* (F(av) + Im*(F (e, v} (5.2)

and
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4f Im(F(u,v))

V) =tan| ————=|. 53
Py [Re(F(u,v»] 3

The discrete Fourier transform in Equation (5.1) can be expressed in the separable form

| 4=t (1 ¥ H
F(u,v)=— Y exp(- j.’Zmu:/Mi— Y flx.yexp(- j2mr_v/N)J (54)
M =0 N v=0

where u=0.1.2....M —1 and v=0.1.2.....N —1. The principal advantage of the separability

property is that F(u,v) can be obtained in two steps by successive applications of the one-
dimensional Fourier transform. I[n other words. the two-dimensional function F(u,y) is
obtained by taking a transform along each row of f{x,y), and then F{u,v) is obtained by taking
a transform along each column of F(uy). Another important property in the frequency
domain is a conjugate symmetry. In the following description. we consider the image size as
a square array. M=N. As in the case of one-dimensional Fourier transform. the two-

dimensional DFT is periodic with period V. ie..

Fuv)=Fu+N.v)=Fu.v+N)=Fu+N.v+N). 5.5

The validity of this property can be demonstrated by direct substitution of the variables
(u+N) and (v+N) in Equation (5.1). Because of the periodicity, usually only the range
—n<u.v<nr is displayed. which translates into the N values of each variable in any one
period. Therefore. one period of the transform is necessary to specify F{u,v) completely in

the frequency domain. Furthermore, the conjugate symmetry property of two-dimensional
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DFT is also useful for feature extraction. Figure 5.3 shows diagonal symmetry on a
transformed domain. For instance, for real valued signals, f{x,v) is real. Using the conjugate

symmetry property of Fourier transform, we have
F(u,v) = F *(~u.—v) (3.6)
and the magnitude of F(u,v) is

|F (78 v)l =|F (—u.—v)[ 3.7

where F *(-u.-v) is the complex conjugate of F(u.v). As a special case, if f{x.z) is real and
symmetric in spatial domain, the magnitude of the Fourier spectrum has the following

symmetry property.

F(u.v) = F(u.—v) = F(-u.v) = F(-u.—~v) (5.8)

As shown in Equations (5.5) and (5.7), the periodicity property indicates that F{u,v) has a

period of length N. The symmetry property shows quadrants of the Fourier transform after

oy

multiplication by the factor (—1)*™* prior to the Fourier transform,

N-i N-L
Fu—-NI2,v—-N12) =%ZZ Fx VD expl- j2mex ! Nlexpl- j2mv I N] (5.9)
=0 =0
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Figure 5.3 The diagonal symmetry on transformed domain F(u,v).

The centering process swaps the first and third quadrants and second and fourth
quadrants of transformed spectrum. F(u,v). As a result of the conjugate symmetry property,
one-half of the transform domain samples are sufficient to fully represent the information in
flx.y). Since the dynamic range of a Fourier transformed image is in general very highly
valued. the spectra can only be visible on the brightest part. In order to avoid compressing
the high values in Fourier spectra and the logarithmic magnitude of the DFT. log|F(u,v)| is
used. This method helps to bring out more details of the Fourier transform in regions where
F(u,v) is very close to zero. Figure 5.4 shows an example of magnitude and phase spectrum

of Fourier transform. which can be useful for feature extraction.

5.2 Two-dimensional Feature Extraction

An image feature is a distinguishing primitive characteristic or attribute of an
mage. [n feature selection, the discriminatory attributes using diagonal and conjugate

symmetry on two-dimensional Fourier transform can be chosen as a feature vector. Three
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Figure 5.4 Examples of Fourier transform: (a) magnitude (b) phase spectrum.

different feature selections, namely, magnitude, phase, and combined magnitude and phase,

are described in following section.

1. Feature A - Magnitude

The magnitude, in general, represents the most intuitive feature of one-dimensional or
two-dimensional spectral data. Figure 5.5 shows two-dimensional Fourier transform
magnitudes of B- and B’-scan images for four classes. As can be seen, it is difficult to
extract discriminatory features manually from the transform domain. However. using the
diagonal symmetry property, the upper left quadrant (II) or upper right quadrant (I) can be
chosen as a candidate for obtaining a reduced feature vector. In this research investigation,

second quadrant coefficients were chosen as a feature vector and is expressed as

My, )={Fuv|[|0Su<M/2,N2<v<N-I} (5.10)
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(& ()

Figure 5.5 Two-dimensional magnitude spectra of four classes with B- and B’-scans. Each
row shows crack, slag, porosity, and lack of fusion, respectively. Each column shows B-scan
and B’-scan images.
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where 0<i<M/2,0< j<N/2. Therefore, the size of feature matrix is M/2 x N/2. The

feature matrix is converted into a one-dimensional vector format by concatenating the

columns

M e =M, (5 j=0) M, G j=1) ® © M,(.j=NI2-D] i=0L2...M/2-1
3.11)

and is used as input to a classifier.
2. Feature B - Phase Angle

The phase information in a two-dimensional Fourier transform is sometimes more
useful than the magnitude of Fourier Transform. particularly in ultrasonic signals. Figure 5.6
shows the phase spectra for all four classes and the corresponding average value of all rows.

®, . along frequency variable v, where

M-L
®, (i) =%2¢(n,i), fori=012....N/2-1. (5.12)
{ u=0

3. Feature C - Combined Magnitude and Phase

In signal classification systems, the selected features are optimized to yield (i) inear
separability of classes and (ii) reduced dimensionality of data. Often, the class separability is
mmproved by using a combination of features. In this work, the magnitude and phase spectra

data are used in identifying a new feature vector. The first moment of the magnitude and
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Figure 5.6 Phase spectra and average ®, along frequency variable v of four classes. Each

row shows crack, slag, porosity, and lack of fusion, respectively. Each column shows B-scan
and B’-scan images.
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phase of the two-dimensional Fourier transform are used as a combimed 2M long feature
vector. The first moment of magnitude feature in the same manner like feature B can be

written as
l M-t
M (==Y F(u.i). fori=012..N/2-1. (5.13)
L"[ u=0

Finally. the combined feature vector can be expressed as

1 M-t [ M- _
C.(h)=|—) Fu.i) — u,i (3.14)
(i) [M§ (w.i) M;w 7]
where for i=0,.2....N/2~1. The feature vectors for all four classes are shown in Figure

3.7.

5.3 Experimental Resuits

Twenty-eight C-scan images, equally distributed among the four classes, were
obtained by using an automated scanning system with a SMHz transducer and a 60° wedge
angle. The resulting data was sampled at 25 MHz. The feature vectors were computed and
applied to an MLP network for classification. The overall classification scheme is shown in

Figure 5.8 and consists of the following steps:
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Figure 5.7 The combined feature vector plots for the first moment of the magnitude and
phase along frequency variable v of four classes — (a) crack. (b) slag, (c) porosity, and (d)
lack of fusion.
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Select a region of interest (ROI) on a C-scan image.

The ROI in a C-scan image can be defined as

ROI(x,y) = {f (e e =20, X, Xareern Xy, AN Y = Yoo Vo Vaeens Y } (5.15)

where, x, =x, +iAx,i=12..m. and y, =y, + jAy. j=12....n. Ax and Ay are

increment on x and y axis, respectively.

Obtain B- and B"-scans from an ROL.

In the ROL the data is three dimensional represented by ROI(x.y.t) as shown in
Figure 5.9 where (x.y) represents the spatial coordinates of a transducer. Therefore.

B- and B’-scan images can be written as

Beor (¥:8) ={ROI(xy, v.1)|y =¥, i=012....n. 1, <t<1, } (3.16)

and

Bloqr (x.0) ={ROI(x.y,,0) | x=x,, i=012,...m. 1, <t<t, } (5.17

where ¢; and 1> are time gates. For each ROI image of m x n. m B-scan images and n

B’-scan images are generated.

For each B- and B’-scan image,
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Figure 5.8 The overall scheme for multidimensional signal processing.

3. Create a fixed size image.
Since the size of the ROI varies from one image to the other. the dimensionality of
Broi and B'ro; images needs to be first reduced or increased to a fixed size. This can

be achieved by zero-padding, i.e..

0 -0
0 -0

Brar (8o ¥)=|  Bgos(xg. 3.1,) ot (5.18)
- 0 i O-i

where n+n_, =n =32. Similarly, B’rot can be expressed as
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Figure 5.9 The geometry of ROI, B- and B’-scan images.

0 -0
0 -0

BRot (2 X)=|  Bgoi(x,¥o.8:) .- (5.19)
i 0 - 0]

where m+m_, =m=16.

Take two-dimensional Fourier transform to generate F(u,v).

Select two-dimensional features.

Three set of features, obtained using magnitude (Feature A), first moment of phase
(Feature B), and combined first moment of magnitude and phase (Feature C) were
selected.

Generate training data of feature vectors.

The training data consist of 16 images from four classes.

Train B- and B’-networks.

The neural networks are trained using the error back-propagation method with each
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feature sets A, B, and C.

8. Classify test images.

Signal classification was performed using the three different features, magnitude,
phase, and combined magnitude and phase of the two-dimensional Fourier transform of B-
and B’-scan images. The B-scan data analysis is summarized in Table 5.1 and 5.2. Each B-
scan consists of fixed size 512 x 32. From step 1 through 4, the data are transformed into
two-dimensional Fourier domain. Feature A generating images of size (256 by 16 points) is
converted into a vector by concatenating the columns to give a 4096 elements long vector.
Similarly. Feature B produces a vector phase information and Feature C is a vector of
combined magnitude and phase information derived from the Fourier transform.

A MLP with two hidden layers of 40 and 12 nodes was trained. Of a total of 114 B-
scan images, 60% images were used for training the network and the remaining 40% were
used for testing. The detailed results on the test data are shown in Table 5.2. The procedure
for preprocessing B’-scan data is similar to that used for B-scan data. The difference lies in
the fact that the B’-scan image was 512 by L6 points, and the feature vector image is of size
(256 x 8). The data distribution for training and test sets was summarized in Table 5.3. The
classification performances using the 3 feature sets are shown in Table 5.4.

Two separate neural networks are used, one each for the B-scan and the B’-scan.
respectively. During the classification phase, the B- and B’-scan images for a given flaw (C-
scan image) are extracted and classified individually. In the classification of the C-scan
image, the results of B- and B’-network are combined. Since each ROI image generates its

own B- and B’-scan images, B-scan images are first passed through B-network, and B’-scan



Table 5.1 Distribution of B-scan images in each defect.
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Number of images | Crack | Porosity | Slag | Lack of fusion
Train 19 14 L1 24
Test 13 10 7 16
Total 32 24 18 40

Table 5.2 Summary of classification results using magnitude spectrum for B-scans.

Feature A
Crack | Slag | Porosity | Lack of Fusion | Total
Crack 7 1 2 2 7/13
Slag 3 6 l 6/10
Porosity l L 5 57
Lack of Fusion [ 2 3 10 10/16
28/46
Feature B
Crack | Slag | Porosity | Lack of Fusion | Total
Crack 7 3 2 1 7/13
Slag 2 6 2 0 6/10
Porosity 0 L 6 0 6/7
Lack of Fusion L 2 0 13 13/16
32/46
Feature C
Crack | Slag | Porosity | Lack of Fusion | Total
Crack 12 0 0 [ 1213
Slag 0 7 0 3 7/10
Porosity 0 L 6 0 6/7
Lack of Fusion L 1 0 14 14/16
39/46
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Table 5.3 Distribution of B'-scan images in each defect.

Number of images | Crack | Porosity | Slag | Lack of fusion
Train 37 37 33 43
Test 26 26 23 30
Total 63 63 56 73

Table 5.4 Summary of classification results using magnitude spectrum for B'-scans.

Feature A
Crack | Slag | Porosity | Lack of Fusion | Total
Crack 18 8 18/26
Slag 5 9 L 11 9126
Porosity 6 2 15 15/23
Lack of Fusion 3 4 [ 22 22/30
64/105
Feature B
Crack | Slag | Porosity | Lack of Fusion | Total
Crack 12 5 3 6 12/26
Slag 4 10 2 10 1026
Porosity 7 3 13 0 13723
Lack of Fusion 1 3 5 21 21/30
56/105
Feature C
Crack | Slag | Porosity | Lack of Fusion | Total
Crack 17 5 3 1 17/26
Slag 3 15 3 5 1526
Porosity I 0 17 5 17/23
Lack of Fusion 5 I L 23 23/30
72/105
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images are passed through B’-network. The final classification for the C-scan image is
obtained by combining the classifications of each of the B- and B’-scan images. A weighted
majority voting technique is used to combine the results, and the C-scan is assigned to the
resultant class. A majority voting technique finds the class of a number of B- and B’-scan
images obtained from the selected ROI passed through the B- and B’-scan networks. The
results of classification of the 28 C-scan images are shown in Table 5.5.

Unlike Feature B and C. Feature A produces a large dimensional input vector. A
reduced dimension of feature vector can be determined by selecting a region of frequency

spectrum using the following equations,

M
M

=M, @.v). u=12...16]
=M, @), u=1.2..38]

8. feature

B’ feature

where v=101. 103. .... 200. The subband is selected on the basis of the distribution of the
signal energy in various frequency bands. The reduced dimension of Feature A is [100 x 16]
and is generated from B-scan data. The B’-scan data is processed similarly to obtain a
feature vector of size [100 x 8]. These reduced dimension vectors are used as input for B-
and B’-neural networks with two hidden layers of 40 and 12 nodes. The classification
performance using the reduced Feature A is also shown in Table 5.5. As summarized in
Table 5.5. although the training time was reduced relative to the large Feature A. the overall
classification performance decreased significantly indicating loss of discriminatory
information. More work need to be done in selecting the sub-region of the two-dimensional

spectral phase that contain class discriminatory information.
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Table 5.5 Summary of classification results for individual C-scans.

Feature A

| Crack | Slag | Porositv | Lack of Fusion

| Total

6

l

6/7

7

77

Porosity

17

Lack of Fusion

717

27128

Feature A with a reduced dimension

Crack

S

Porosity

Lack of Fusion

Total

4

I

477

wlv|E

37

Porosity

37

Lack of Fusion

I
L
1

(88

3
3
3

37

13/28

Feature B

Crack

Slag

Porosity

Lack of Fusion

Total

6/7

777

Porosity

77

Lack of Fusion

17

2728

Feature C

Crack

Slag

Porosity

Lack of Fusion

Total

7

777

Porosity

17

Lack of Fusion

T

28728
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5.4 Principal Component Analysis (PCA)

Principal component analysis (PCA) is a well established tool in multivariate data
analysis. which has been in use since 1901 [73]. The principal components are obtained
using the eigenvectors of the covariance matrix. The diagonalization of the covariance
matrix is sometimes called the Hotelling transform [74] or Karhunen-Loéve transform (KLT)
{75][76]. The projection of data onto the eigenvector yields the principal components of the
data.

In the signal processing community, principal component analysis is a [inear
transform that has been widely used in data analysis and compression. Principal component
analysis is based on the statistical representation of a random variable [77]. Suppose we have

a random vector population x. where

5
e
x=f - |. (5.21)
—-t" -
The mean of that population is denoted by
u: = E{X} (5'22)

and the covariance matrix of the data set can be expressed as
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C, = Efer, Yon, S } (523)

The elements of C_. denoted by c,, represent the covariances between the random variable
components x, and x,. The element c, is the variance of the component x, and indicates
the spread of the component around its mean value. If two components x, and x, of the data
are uncorrelated. their covariance is zero (¢, =c, =0). The covariance matrix is always
real, symmetric, and positive definite. We can find an orthogonal matrix of eigenvectors of

C, that diagonalizes the covariance matrix. The eigenvalues are derived by finding the

4

solutions of the characteristic equation

IC, —Al|=0 (5.24)

where the I is the identity matrix having the same order as C, and the |o| denotes the
determinant of the matrix. For simplicity we assume that the A are distinct. The

corresponding eigenvalues 4, are derived from the solutions of the equation

[f the data vector has n components, the characteristic equation is of order n. Solving
for eigenvalues and corresponding eigenvectors in general is a non-trivial task. Several
numerical methods have been developed to solve this problem including the more recent

neural solution [78]. Arranging the eigenvectors in the order of descending eigenvalues
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(largest first), one can create an ordered orthogonal basis with the first eigenvector having the
direction of the largest variance of the data. In this way, we can find the directions in which
the data set has the most significant amount of energy.

Suppose one has a data set of which the sample mean and the covariance matrix have
been calculated. Let A be a matrix consisting of eigenvectors of the covariance matrix as the

row vectors. By transforming a data vector x to vector y,

y=AKx-p,) (5.26)

which is a point in the orthogonal coordinate system defined by the eigenvectors.
Components of y are then coordinates in the orthogonal base. We can reconstruct the original

data vector x from y by

x=ATy+pqu, (5.27)

where A’ is the transpose of a matrix A. Equation (5.26) is the projection of the original
vector x on the coordinate axes defined by the orthogonal basis. Equation (5.27) is the
reconstruction of the original vector using a linear combination of the orthogonal basis
vectors.

Alternately., we can also project the data onto a subspace spanned by a subset of
vectors of the orthogonal basis. [f we denote the matrix having the first K eigenvectors as

rows by Ak, we can perform a similar transformation to get
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Y =Ag(x—p,.). (5.28)

The inverse transform is given by

X=A, 'V *H,- (5.29)

This representation minimizes the mean-square error between the data and its representation
for a given number of eigenvectors. In feature extraction, the general objective is to reduce
the dimension of the representation and also preserve as much of the original information
content as possible. PCA offers an efficient way to control the trade-off between loss of
information and dimensionality reduction.

In this section. our effort was focused on the reduction of the input dimensionality of
the feature vector. The experimental data used here were the same as the two-dimensional B-
and B’-scan images from the classes namely. crack, slag, porosity. and lack of fusion. A
total of 28 C-scan images. equally distributed among the four classes. were obtained by using
an automated scanning system with a SMHz transducer and a 60° wedge angle and sampled
at 25 MHz. The feature vectors were computed and applied to an MLP network for
classification. =~ The overall classification scheme is shown in Figure 5.10. In this
classification scheme, the features used were principal components augmented by means of
magnitude and phase spectra as described below. Steps I through 5 are similar to those
described in section 5.3 (Refer Figure 5.9).

[. Select a region of interest (ROI) on C-scan image.

The ROI in a C-scan image can be defined as
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Figure 5.10 The overall classification scheme for multidimensional signal processing using
PCA.

\

ROI(x._v)={f(x.y)[x=x0..tl,x:, ..... X ANd Yy = V5. V. V5ol ¥, } (5.30)

where. x, =x, +iAxi=L2..m. and y, =y, + jAy. j=12....n. Ax and Ay are

increment on x and y axis, respectively.
2. Obtain B- and B’-scans from a ROL.
In the ROI. B- and B’-image are obtained by scanning the spatial coordinate (x.y) of a

transducer and can be written as

Bpo (3.0) ={ROI(xy, ¥.0) | y=y,. i=012,..n, 1, <t<1, } (5.31-a)

B (5.0) ={ROI(X, yg.0) [ x=x,, i=012,...m, 1, <r<t, } (5.31-b)

where z; and ¢, are time gates.
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For each B- and B’-scan image,

3. Create a fixed size image.
Since the size of the ROI varies from one image to the other, the dimensionality of
Brot and B’ro; images needs to be first reduced or increased to a fixed size with zero-

padding. The resized data consists of

0 -0
0 -0

BROI(I.'.V)z Beoi (X4, v.1,) - - (5.32-a)
i 0 - 0]
[ 0 - 0]
0 -0

Bt (,-X)=|  Bgg (X ¥o.1,) - (5.32-b)
- 0 " 0-

The dimension of resized Bror and B'ror images are [512 x (n+n_, =n=32)] and
[512x (m+m_ =m=16)], respectively.

4. Compute two-dimensional Fourier transform.

The two-dimensional Fourier transform is computed using the following definition:

H-1N-L

Fu.v)= _1_2 Y fix.yexpl- j2muxt Mlexpl- j2vy 1 N] (5.33)
W =0 v=0
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where «=0,12,...M —1. and v=0,12,..,N —1. The dimensionality of F(u.v) for

Broi and B'ra is

512xn, forROI,

" . (3.34)
512xrm, for ROI,.

Dim{F(u,v)}= {

. Compute the first moment of two-dimensional spectra.
As described in Section 5.2, the average values of all rows along frequency variable v

of the magnitude and phase spectra are obtained by

M-
M.()=—Y Fai). fori=012..NI2-1. (5.35-2)

M u=0

l H-1
®,()=—Y ou.D). fori=0L2..N/2-L (5.35-b)

M

and finally the combined feature vector (CFV) can be expressed as
l -1 1 M-~
CFV, () =|— Y, Fe.D). — Y #u.i) (5.36)
M u=0 M u=0

where for {=0.12...N/2-1.

. Normalize the data.

The normalization of the data (F) of size of M x N is calculated by



. F,-u
£, =t ic12 M (537)
U;
where
i N
yiz—izli.l,iﬂ.z.....M. j=12..N. (5.38-2)
=t
l v 74
o, {VZFN-M} d=12e. M. j=12..N. (5.38-b)
)=t

7. Compute the covariance matrix. eigenvalues. and eigenvectors.
The covariance matrix for each class (crack. slag, porosity. and lack of fusion) is

calculated by

S 2 Cip
Cy Cn = ° Cy
Cm: =| - SR (5.39)
[Cot Cp2 © €|

where the element c;; of C being defined as

cx;’ = E[(F; R )(F, -FI)T] - (5»40)

The characteristic equation of C, is a polynomial of degree p, which is obtained by

expanding the determinant of



~p

(5.41)

and solving for the roots A. Specifically. the largest eigenvalue, A, and its associated

vector, vi, are corresponding. Figure 5.11 shows the largest eigenvalues of the

covariance matrix of the four classes.

. Compute the principal components (PC).

Let Vak, Vg, Vpor, and Vi be K significant eigenvectors of the estimated covariance

matrices. Cax, Csg Cporr and Cio¢ of crack. slag, porosity, and lack of fusion.

respectively. Then. the principal component features of a data set F are obtained

using the projections

PC. =EF'V,,]
PC,, = E[Frvﬂg]
PC,, = E[FTVW,]

PC,, =E[F'V,]

Finally, the overall feature vector based on PCA can be expressed as

PC =[PC,, PC,, PC,, PC,I.

(3.42-a)

(5.42-b)

(5.42-¢)

(5.42-d)

(543)
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Figure 5.11 Eigenvalues of the covariance matrix: (a) B-scan data (b) B’-scan data.

9. Train B- and B’-networks.

10. Classify test images.
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In principal component analysis, the key factor is the selection of eigenvalues. There
is, however, no general criterion for selecting the number of eigenvalues. In this research,
based on the largest eigenvalues, a set of 11 eigenvalues was chosen for each class. Each
class is presented by L1 eigenvectors derived from the training data in that class. Each
training data is projected onto the 44 eigenvectors to generate a 44-dimensional feature
vector. A neural network of architecture 44-20-8-4 was trained and used for classification.
In the classification phase, the B- and B’-scan images for a given flaw (C-scan image) are
extracted and classified individually. In the classification of principal component features.
the overall classification performance was comparable to two-dimensional features processed
in Section 35.3. In addition. the training time was reduced because of lower dimensionality.
Tables 5.6 and 5.7 summarize the data distribution and classification results for B- and B’-
scan data. The final classification for the C-scan image is obtained by combining the
classifications of each of the B- and B’-scan images as explained in the previous section.
Again. a weighted majority voting technique is used to combine the results. and the C-scan is
assigned to the resultant class. The results of classification of the 28 C-scan images are

shown in Table 5.8.

5.5 Three-dimensional Moment Analysis

[n ultrasonic weld inspection. the transducer scans a two-dimensional plane with an
A-scan acquired at each spatial point. Processing the data in its entirety involves using the
information in the three-dimensional volume for classification. In order to compute features

that capture all the information, this section introduces three-dimensional spatial moments of
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Table 5.6 Summary of data distribution and classification results of training and testing data
using PCA for B-scans.

Data distnibution
Number of images | Crack | Porosity | Slag | Lack of fusion
Train 22 17 13 28
Test 10 7 5 12
Total 32 24 18 40
Training data
Crack | Slag | Porosity | Lack of fusion | Total
Crack 22 0 0 0 22/22
Slag 0 17 0 0 17/17
Porosity 0 0 13 0 13/13
Lack of fusion 0 0 0 28 28/28
80/80
Testing data
B Crack | Slag | Porosity | Lack of fusion | Total
Crack 8 0 0 2 8/10
Slag 0 5 L 1 51
Porosity 0 1 4 0 45
Lack of fusion 2 0 0 10 10/12
27/34




Table 5.7 Summary of data distribution and classification results of training and testing data

using PCA for B’-scans.
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Data distribution
Number of images | Crack | Porosity | Slag | Lack of fusion
Train 44 44 39 51
Test 19 19 17 22
Total 63 63 56 73
Training data
[ Crack | Slag | Porosity | Lack of fusion | Total
Crack s 0 0 0 44/44
Slag 0 s 0 0 44/44
Porosity 0 0 39 0 39/39
Lack of fusion 0 0 0 51 51/51
178/178
Testigg data
Crack | Slag | Porosity | Lack of fusion | Total
Crack 13 3 L 2 13/19
Slag 5 10 2 2 10/19
Porosity 1 2 13 L 13/17
Lack of fusion 2 3 0 17 17/22
53177

Table 5.8 Summary of classification results using PCA for individual C-scans.

Crack | Slag | Porosity | Lack of Fusion | Total
Crack 7 77
Slag 7 7
Porosity 7 7
Lack of Fusion 7 17

28128
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the ultrasonic volumetric data. The three-dimensional moment, in general. is defmed as

1 L N M
M(p.q.r)= ————— XPvir'Vix, v.1) (.44
(p.q.7) L,N,,M,Z:,;; Yrv(x, ) )

where p, ¢, and r are the orders of moments. Here V(x. v.r) indicates the volume of data

with x=1,2,...M. y=1.2... N and £=1.2.....L. Clearly, the zero order spatial moment (zero-

order moment) is given by

000 =33 SViey.n) (5.45)

=l y=l =l
where M(0.0.0) is the sum of the voxel values. The ratios

M (1.0.0)
M (0.0.0)
M (0.1.0)
M (0.0,0)
_ M(0,0.0)
"~ M(0.0.0)

]
I

‘<)
I

(5.46)

had}

of first-order to zero-order spatial moments define the centroid of the volume data. With the

ratios. we can define other order spatial central moments of a discrete volume as

L N M
M(p.q.) = S Y Y - FPLy TG~ V(r ). (547)
L NQM =l oyl o=l
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In three-dimensional signal classification, the spatial moments can serve as a
candidate for features to be used in classification. This research initially was focused on the
two-class problem namely, planar vs. volumetric flaws. In this problem, crack and lack of
fusion belong to the planar defect type. whereas porosity and slag belong to the volumetric
flaw type. In order to get a moment-based feature vector, we investigated moments of order
(p+q+r) with p=0.1.2,3. 4=0.1.2.3 and r=0,1.2.3. Figure 5.12 shows the 64 (p+q+r) order
moments for the four flaws. In this figure, the horizontal axis indicates the index number of
the data files and vertical axis indicates (p+q+r) order moment values. For example.
(p=1,g=1,r=2) indicates 22™ order moment on the vertical axis. As can be seen in Figure
5.12, the moment distribution of each class distinguished the flaw type.

The moment distribution of the volumetric flaw (slag and porosity) is different than
that of planar scatters (crack and lack of fusion). A neural network classification with one
hidden layer of size 12 was trained to classify the moment vectors. The network training
time was very short compared to a two-dimensional classification. Table 5.9 summarizes the

data distribution and classification resuits obtained.

5.6 Three-dimensional Fourier Transform

An alternate choice for features representing volumetric data is to consider the three-
dimensional spectral domain. In order to analyze the full three-dimensional volume of data.

this process was extended to three-dimensional DFT pair which is defined as

N-L N-I N-L

Fav,w)=Y ¥ ¥ flopnIWe™™  for u,v.w=0L2....N-L. (548)

=0 y=0 =0
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Figure 5.12 The spatial moments: (a) crack, (b) slag, (c) porosity, and (d) lack of fusion.
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Table 5.9 Summary of data distribution and classification results of testing data using a
spatial moment features — planar vs. volumetric.

Data distribution
Number of files Planar | Volumetric
Train 8 8
Test 6 6
Total 14 14

Overall ciassification (training + testing data)

Planar | Volumetric Total
Planar 13 1 13/14

Volumetric 2 12 12/14

and
N-t N-1 V-1
flx.y.2)= 2 2 Z Fluv.w)W,*"™  for x.y.z=0.L2...N-1 (549)
u=0 v=0 w=0
where W, =¢™/**'¥ and f{x,y,z) represents the volumetric data. which is a function of three

discrete spatial variables (spatial) x, y and (time) . The variables «, v. and w are the
corresponding spatial and time frequency variables. The magnitude and phase spectrum are

defined as
]F (u.v. w)| = [Rez([" (w.v.w)) + Im*(F (. v. w))}lz (5.50)

and

Im(F (u, v, w))] (5.51)

e
#(w.v. w) =tan [Re( Flu,v.w))
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The separability, periodicity, and symmetry properties can be derived in the same
manner as in the two-dimensional case. The discrete Fourier transform in Equation (5.8) can

be expressed in the separable form
N-1 N-1 N-1
Fluv.w)=YWe Y W2 Y f(r.y. IW" (5.52)
=0 ¥=0 =0

for u.v.w=0,12,...N -1. As can be seen in Equation (5.48), three-dimensional Fourier

transform can be calculated sequentially along the three components. The three-dimensional

periodicity with period V is expressed as

Fu.v.w)=F(u+N.v+N.w)
=Fu+N.v.w+N)
=F(u,v+ N,w+N)
=F(u+N.v+N.w+N).

(5.53)

The validity of this property can be demonstrated by direct substitution of the
variables (u+N). (v+N). and (w+N) in Equation (5.8). Here. only one period of the transform
is necessary to specify F(u,v,w) completely in the frequency domain.

The three-dimensional Fourier transform also exhibits a conjugate symmetry. which

can be written as

F(u,v.w)=F *(—~u~v.—w) (5.54)

and the magnitude of F(u,v,w) as
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IF (u,v, w)| = |F (-u,—v,—w)[

(5.55)

where F *(-u,—v.-w) is the complex conjugate of F(u,v,w). As in two-dimensional

Fourier transform, after centering the transform in the frequency range [-m.7] in the transform

domain. we can derive a diagonal symmetry property as shown in Figure 5.13.

Some simple examples of three-dimensional transforms are given below. Consider

the three-dimensional discrete unit impulse. d(n,,n,.n;).

l, n,=n,=n,=0

Na.n)=0(ny.n.n) =
f(ry.ny.n5) = 0.1y ms) {O. otherwise

The Fourier transform of the impulse function can be calculated as

N =t V=1V -1

Flav.w)= Y 3 ¥ 8(ty.ny.r Wym Wyrswim
m=0 n,=0m=0
N -1V,

=¥ Y 5tn,.n W

m=0 n,=0
N~i

= 2 O (n Wy
m=0

=1
Next. consider a simple cube defmed as

LOSxyzsN-1

0, otherwise

flxy.2)= {

(5.58)



121

F(n, v, W)

fix, y, z)

Figure 5.13 The diagonal symmetry on transformed domain F{u,v,w).

which is real and symmetric. and where N=8. If f(x.y,z) is continuous and integrable. the

three-dimensional Fourier transform F(u.v.w) can be written as

F@,v.w)= J’H f(x. ¥, 2)exp{—j2r(ux + vy + wz)ldxdydz . (5.59)

V.2
According to the above equation. the three-dimensional Fourier transform is calculated as the

following.

-+ _, N-1 _ N-1
F(u.v.w)z_[)” e-l'mdt“; e l‘-'mv,vdy‘[) e llmv:dz

)y N-ipr  _ .o N-i . Nt
-j2m ], | -j2v] |- 2w

= -lem‘ E-,z,-.mN—n -I] _j;m E‘]mhv-n _[] —j;mv [e—/lnm.v-l) _[]

_ 1 k FRN-D _, N ] o —ImN-D 1 [e JRUN-D) RS-

J2mu P2
I
Jj2mu
_ sin{me(N -1) Je =D sintav(N =) je—"""*" sin{mw(N —[)}e =¥
B u 4 nw i

N-
B n] e—

Nt N-t Nt
[epmt ) _ g rmut )] o /BN

(5.60)
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Therefore, the magnitude spectrum is

’ VDS - N o _ N
[F(u.v,w)|=ls‘“{’”‘“"‘£}e~' ’Hsm{zzv(N ’:v)}e mv"ﬂsm{ﬂW(N ml:}e , ,{.

(5.61)

In this case. the real and symmetric magnitude spectrum is shown in Figure 5.14. By
applying three-dimensional Fourier transform. this thesis investigates the derivation of
volumetric features of the ultrasonic data. A major drawback. however. is that this technique
results in a very large dimension of the feature vector. For a volume of MxNx512. the length
of the feature vector after taking into consideration the symmetry of the transform is so huge.
One possible method to reduce the dimensionality is to consider the moments in the
transform domain.

In order to investigate the feasibility of three-dimensional moment features in three-
dimensional Fourier transform domain, the classification of the volumetric data was
implemented in the same manner as in the three-dimensional spatial domain. In this study,
the moment values were calculated using Equation (5.48). Again. this study has focused on
the two-class problems namely, planar vs. volumetric type. The order (p+q+r) indices for
moment calculations used here to compute a three-dimensional Fourier transform moment
feature are p=0.1,2.3. ¢=0.1,2,3 and r=0.1,2,3. Figure 5.15 shows a plot of the (p+g+r) order
moments for the four classes. The number of moments used here is 64. which is the number
of input nodes in the neural network. The architecture of the MLP neural network is 64-12-2
nodes in input, hidden, and output layers. respectively. Table 5.10 summarizes the data

distribution and classification results with the planar vs. volumetric case.
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Figure 5.14 A synthetic three-dimensional Fourier transform (a) a cube data, (b) a
magnitude spectrum of one slice with xy-plane at z=32 and its contour plot, (c) contour plots
on z=25, 27, 32,37,40, and (d) three-dimensional DFT volume.
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Table 5.10 Summary of data distribution and classification resuits of testing data using a
Fourier transformm moment features — planar vs. volumetric.

Data distribution
Number of files | Planar | Volumetric
Train 8 8
Test 6 6
Total 14 14

Overall classification (training + testing data)

Planar | Volumetric Total
Planar 11 3 L1/14

Volumetric 4 10 10/14




CHAPTER 6. CONCLUSIONS

6.1 Summary and Conclusions

This research was motivated by a desire to develop a complete ultrasonic signal
processing and analysis package for interpretation of the data generated in a two-dimensional
scan. Also. this research studied the limitations of split-spectrum processing. The basic
problem with ultrasonic grain noise reduction was that the signal energy of both the flaw and
microstructure lies within the same frequency range. and hence typical filtering techniques.
such as a lowpass. highpass, or a single bandpass filter. were not effective even in split-
spectrum processing. The split-spectrum processing technique designed to eliminate the
microstructure signal would result in the loss of the flaw signal. In addition. a signal with
two distinct frequencies failed to enhance the signal-to-noise ratio in split-spectrum
processing.

In the second focus of the research. noise due to material grain structure was reduced
using a multi-stage adaptive filtering algorithm. A multi-stage adaptive noise cancellation
scheme using a LMSE adaptive filter was developed and analyzed. The first stage adaptive
filter was used as a preconditioning stage so that the signals at the output of the first stage
possess the requisite correlation properties for the second stage adaptive filter to be more
effective. = The Multi-stage Adaptive Noise Cancellation (MANC) algorithm was
demonstrated to be successful in achieving these goals as indicated in the significant jump in

the de-noising performance at the second stage as shown in Table 3.4 and Table 3.5. Also,
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the effects of transducer distance. filter length. and leaning rate on the multi-stage adaptive
noise cancellation method have been studied and selected. In addition, the optimal number
of stages is selected for implementing a stopping criterion based on the SNR ratio of two
successive stages. The proposed algorithm is simple and easy to implement and is seen to be
effective when the filter parameters are optimal. The drawback of the proposed algorithm is
the increase in implementation time complexity due to the additional adaptation stages.
However. the proposed algorithm can also be implemented in real time using a TMS320C25
or TMS320C30 DSP chip for on-line inspection applications.

The third emphasis of this research is to develop a multi-dimensional signal
processing and classification scheme. [In this thesis. ultrasonic signal classification
algorithms based on the information in a neighborhood of A-scans have been developed.
Implementations of one, two. and three-dimensional signal classifications have been
presented. Table 6.1 summarizes the different implementations of multi-dimensional

processing.

Table 6.1 Summary of multi-dimensional processing.

Dimension Feature Neural Network | Classification Note
Performance
One DWT 140-40-12-4 24728 Time-frequency
processing |
Two FET Magnitude 4096-40-12-4 27128 Use echo
FFT Phase 256-40-12~¢ 27128 dynamics on
Mean [Magnitude 512-40-124 28/28 linear scan
Phase]
PCA 44-20-8-4 28/28
Three Spatial moment 64-12-2 2528 Usage of volume
FFT moment 64-12-2 21728 data on spatial
and frequency
domain
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In general, ultrasonic signal classification systems are based on processing individual
A-scans. Even though these approaches show reasonable success, a single A-scan signal
itself cannot represent a flaw in time, space. or transform domain. Another drawback of
these approaches is that they do not incorporate the effect of beam spread. A better approach
is to analyze a neighborhood of signals prior to making a classification decision. Such an
approach provides a better estimate of the dynamics in the signal. Because of these reasons,
the two and three-dimensional signal classification techniques were studied. In two-
dimensional signal classification. the various features using magnitude. phase. and the first
moment of combined magnitude and phase spectra on two-dimensional Fourier transform
were investigated. In particular, the first moment of combined magnitude and phase spectra
resulted in a good classification performance. In addition, a two-dimensional process using
principal component analysis showed comparable results. where the variance of a group of
A-scans in a neighborhood is computed. Furthermore, the initial results of moments in three-
dimensional spatial and transform domain clearly demonstrate the ability of a neural network
to discriminate between planar (crack and lack of fusion) and volumetric (slag and porosity)
discontinuities. The results are, however. obtained only on a limited set of data and need to
be validated on a larger database.

A major problem encountered in this work was the availability of reliable training
data. Although a significant amount of effort was spent on “cleaning” this database. the
training data was used in developing the ASC system contained conflicting information. The
availability of a reliable numerical model would have solved this problem. However, to-date

there are no theoretical models that can simulate the ultrasonic wave propagation i a weld



129

region with porosity, slag or lack of fusion. Lack of reliable simulated and experimental data

proved to be a serious drawback in this work.

6.2 Future Work

In the multi-stage adaptive filtering method. the capability of noise reduction has
been demonstrated. However. the performance depends strongly on the filter parameters and
hence automated selection of optimal filter parameters should be investigated. Alternate
adaptation algorithms must also be evaluated. Future work will focus on a study using the
following approaches.

e Combinations of algorithms in different stages will also be studied. In this research.
the LMS adaptation algorithm has been used in adjusting filter weights. For the
multi-stage adaptive filtering method. each stage adaptation algorithm can adopt
different adaptation methods such as recursive least square algorithm or constant
modulus algorithm.

e [n signal classification, feature extraction will concentrate on classification of a larger
database. For the feature extraction. the automated feature selection such as [D3 with
three-dimensional Fourier transform will also be useful for identifying the features

with the most amount of discriminatory information.
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APPENDIX

PROPERTIES OF THREE-DIMENSIOANL FOURIER TRANSFORM

In discussing the three-dimensional discrete Fourier transform (DFT), we have not
assumed that our image data contains only real sample values. Indeed. all of the results are
valid whether f{x,y,z) is real or complex. As with one- or two-dimensional discrete Fourier
transforms, however. if f{x,y,2) is known to consist of a real sequence of data, the DFT will
satisfy symmetry property. We investigate some properties of three-dimensional Fourier
transform.

The three-dimensional DFT pair is defined as

<
L
<
<

F(u.v.w)= ‘ fle y. D)W= for u.v.w=0.12....N-L. (A.]D)

i1
i
i

and

NI N1 V=i

[ 0= Y Y Fuv.w)Wy=™™" for x,y,z=01L2...N-1. (A2)

u=0 v=0 w=0

1IN
=g/

where W, and f{x,y,z) represents a volumetric data that is a function of three

discrete spatial variables x, y. and z. The variables «, v, and w are frequency variables.
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L. Conjugate Symmetry

In symmetric property, let f{x,y,z) be real. The Fourier transform exhibits conjugate

symmetry, which can be written as

F(u,v.,w)=F *(—u,—v.-w) (A.3)

and the magnitude of F(u,v,w) is

|Fu.v.w) =|F(-u.—v.—w)| (A4)

where F *(-u.~v.—w) is the complex conjugate of F(u.v.w).

If fixy.z) is real. flxy.z) = fHxy.z). First we can define the complex conjugate

F *(~u.~v.—w) of F(u.v.w) by the definition of three-dimensional Fourier transforms.

NI N-L N~

F*(~u,~v,-w) = 2 E Z f*(x . :)(W;"‘”""':’ )* (A5)

=0 y=0 =0

The term of (W;‘“""""':’ )* simply can be computed as follows:
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g o= ). (A.6)

Second, by the definition Equation (A.1), the magnitude of F{u,v,w) can be calculated as

| LEE —
HCRS ""')| = lg o Sl y, D)Wy , (AT
and
N-1 N=-1 V=i
IF(-H.—V,—W)' = z zz f( X. V.2 ,)(W U+ VY+W2) (A.S)
=0 y=0 =0

Since the magnitude of term [Wy™™%| =|W;"™™|. (A.7) and (A.8) hold validly.

2. Periodicity

The validity of periodic property can be demonstrated by direct substitution of the
variables (u+N), (v+N) and (w+N) in Equation (A.1). This property represents that only one
period of the transform is necessary to specify F(u,v,w) completely in the frequency domain.

The periodic property with period N can be defined as

Fuv.w)=Fu+N.v+N.w)
=Fu+N.v.w+N)
=Fu,v+N,w+N)
=FW+N,v+N,w+N).

(A9)
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Let us first compute the periodic property F(u,v.w)=F(u+N,v+N,w). By

definition. F(u+ N,v+ N.w) with period N can be written as

<

o

<

i
1D
i

<

N-1

Fu+N.v+N.w)= flx, y, YWyrireemivme (A-10)

where u.v.w=0.L2...N —-1. Since (WJ") and (W\‘,W) in term (W{,"""""“"v’-‘"“) are always
equal o one. (WEVretMre) g equal o (WE<).  Therefore.

F(uv.w)=F(u+N.v+N.w) hold validly. A similar process can be used to prove

periodicity.
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